ﻻ يوجد ملخص باللغة العربية
Using an electric field instead of an electric current (or a magnetic field) to tailor the electronic properties of magnetic materials is promising for realizing ultralow energy-consuming memory devices because of the suppression of Joule heating, especially when the devices are scaled to the nanoscale. In the review, we summarize recent results on the giant magnetization and resistivity modulation in a metamagnetic intermetallic alloy - FeRh, which is achieved by electric-field-controlled magnetic phase transitions in multiferroic heterostructures. Furthermore, the approach is extended to topological antiferromagnetic spintronics, which is currently receiving attention in the magnetic society, and the antiferromagnetic order parameter has been able to switch back and forth by a small electric field. In the end, we envision the possibility of manipulating exotic physical phenomena in the emerging topological antiferromagnetic spintronics field via the electric-field approach.
Non-collinear antiferromagnetic materials have received dramatically increasing attention in the field of spintronics as their exotic topological features such as the Berry-curvature-induced anomalous Hall effect and possible magnetic Weyl states cou
Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields. Different device concepts have been predicted and experimentally demonstrated, such as low-temperature AFM
Ferrimagnets, which contain the advantages of both ferromagnets (detectable moments) and antiferromagnets (ultrafast spin dynamics), have recently attracted great attention. Here we report the optimization of epitaxial growth of a tetragonal perpendi
The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to
We propose a universal practical approach to realize magnetic second-order topological insulator (SOTI) materials, based on properly breaking the time reversal symmetry in conventional (first-order) topological insulators. The approach works for both