ﻻ يوجد ملخص باللغة العربية
In this study we present an alternative approach to separating contributions to the NMR shift originating from the Knight shift and chemical shielding by a combination of experimental solid-state NMR results and ab initio calculations. The chemical and Knight shifts are normally distinguished through detailed studies of the resonance frequency as function of temperature and carrier concentration, followed by extrapolation of the shift to zero carrier concentration. This approach is time-consuming and requires studies of multiple samples. Here, we analyzed $^{207}$Pb and $^{125}$Te NMR spin-lattice relaxation rates and NMR shifts for bulk and nanoscale PbTe. The shifts are compared with calculations of the $^{207}$Pb and $^{125}$Te chemical shift resonances to determine the chemical shift at zero charge carrier concentration. The results are in good agreement with literature values from carrier concentration-dependent studies. The measurements are also compared to literature reports of the $^{207}$Pb and $^{125}$Te Knight shifts of $n$- and $p$-type PbTe semiconductors. The literature data have been converted to the currently accepted shift scale. We also provide possible evidence for the self-cleaning effect property of PbTe nanocrystals whereby defects are removed from the core of the particles, while preserving the crystal structure.
Multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy using S-, X-, Q- and W-Band frequencies (3.6, 9.7, 34, and 94 GHz, respectively) was employed to study paramagnetic coordination defects in undoped hydrogenated amorphous silico
The abundance of semiconductors in our smartphones, computers, fiber optic junctions, cars, light sources, photovoltaic and thermoelectric cells results from the possibilities of controlling their properties through doping, lighting, and applying var
We review many-body effects, their microscopic origin, as well as their impact onto thermoelectricity in correlated narrow-gap semiconductors. Members of this class---such as FeSi and FeSb$_2$---display an unusual temperature dependence in various ob
Pentadiamond is a recently proposed new carbon allotrope consisting of a network of pentagonal rings where both sp$^2$ and sp$^3$ hybridization are present. In this work we investigated the mechanical and electronic properties, as well as, the therma
We present a comprehensive study of vacancy and vacancy-impurity complexes in InN combining positron annihilation spectroscopy and ab-initio calculations. Positron densities and annihilation characteristics of common vacancy-type defects are calculat