ﻻ يوجد ملخص باللغة العربية
Based on recent studies regarding high-temperature (high-$T_c$) La-Y ternary hydrides (e.g., $P{bar{1}}$-La$_2$YH$_{12}$, $Pm{bar{3}}m$-LaYH$_{12}$, and $Pm{bar{3}}m$-(La,Y)H$_{10}$ with a maximum $T_c sim 253$ K), we examined the phase and structural stabilities of the (LaH$_6$)(YH$_6$)$_y$ series as high-$T_c$ ternary hydride compositions using a genetic algorithm and $it ab$ $it initio$ calculations. Our evaluation showed that the $Pmbar{3}m$-LaYH$_{12}$ reported in the previous study was unstable during decomposition into $Rbar{3}c$-LaH$_{6}$ + $Imbar{3}m$-YH$_{6}$. We also discovered new crystal structures, namely $Cmmm$-LaYH$_{12}$ ($y=1$), $Rbar{3}c$-LaYH$_{12}$ ($y=1$), $Cmmm$-LaY$_3$H$_{24}$ ($y=3$), and $Rbar{3}$-LaY$_3$H$_{24}$ ($y=3$), showing stability against such decomposition. While $Rbar{3}c$ ($y=1$) and $Rbar{3}$ ($y=3$) did not exhibit superconductivity owing to the extremely low density of states at the Fermi level, $Cmmm$ phases exhibited a $T_{c}$ of approximately 140~K at around 200~GPa owing to the extremely high electron--phonon coupling constant ($lambda$ = 1.876 for LaYH$_{12}$). By the twice longer stacking for $Cmmm$-LaY$_3$H$_{24}$, the coupling constant increased owing to the chemical pressure of Y, leading to a slightly increased $T_{c}$.
The search for hydride compounds that exhibit high $T_c$ superconductivity has been extensively studied. Within the range of binary hydride compounds, the studies have been developed well including data-driven searches as a topic of interest. Toward
The discovery of superconductivity at 203K in SH$_3$ is an important step toward higher values of $T_c$. Predictions based on state-of-the-art DFT for the electronic structure, including one preceding experimental confirmation, showed the mechanism t
Recently superconductivity has been discovered at around 200~K in a hydrogen sulfide system and around 260~K in a lanthanum hydride system, both under pressures of about 200 GPa. These record-breaking transition temperatures bring within reach the lo
A unique property of metal nanoclusters is the superatom shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally str
Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here we report the synthesis of yttrium hexahydride Im3m