ﻻ يوجد ملخص باللغة العربية
The search for hydride compounds that exhibit high $T_c$ superconductivity has been extensively studied. Within the range of binary hydride compounds, the studies have been developed well including data-driven searches as a topic of interest. Toward the search for the ternary systems, the number of possible combinations grows rapidly, and hence the power of data-driven search gets more prominent. In this study, we constructed various regression models to predict $T_c$ for ternary hydride compounds and found the extreme gradient boosting (XGBoost) regression giving the best performance. The best performed regression predicts new promising candidates realizing higher $T_c$, for which we further identified their possible crystal structures. Confirming their lattice and thermodynamical stabilities, we finally predicted new ternary hydride superconductors, YKH$_{12}$ [$C2/m$ (No.12), $T_c$=143.2 K at 240 GPa] and LaKH$_{12}$ [$Rbar{3}m$ (No.166), $T_c$=99.2 K at 140 GPa] from first principles.
Stability of numerous unexpected actinium hydrides was predicted via evolutionary algorithm USPEX. Electron-phonon interaction was investigated for the hydrogen-richest and most symmetric phases: R$overline{3}$m-$AcH_{10}$, I4/mmm-$AcH_{12}$ and P$ov
Based on recent studies regarding high-temperature (high-$T_c$) La-Y ternary hydrides (e.g., $P{bar{1}}$-La$_2$YH$_{12}$, $Pm{bar{3}}m$-LaYH$_{12}$, and $Pm{bar{3}}m$-(La,Y)H$_{10}$ with a maximum $T_c sim 253$ K), we examined the phase and structura
Low power efficiency is one of the main problems of THz sources, colloquially known as the THz gap. In this work we present prototypes of THz devices based on whisker-crystals of a hightemperature superconductor Bi2Sr2CaCu2O8+d with a record high rad
Discovery of high-temperature superconductivity in hydrogen-rich compounds has fuelled the enthusiasm for finding materials with more promising superconducting properties among hydrides. However, the ultrahigh pressure needed to synthesize and mainta
Searching for superconducting hydrides has so far largely focused on finding materials exhibiting the highest possible critical temperatures ($T_c$). This has led to a bias towards materials stabilised at very high pressures, which introduces a numbe