ﻻ يوجد ملخص باللغة العربية
A unique property of metal nanoclusters is the superatom shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise of the near-threshold density of states of several clusters ($Al_{37,44,66,68}$) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with $T_c$>~100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-$T_c$ materials, devices, and networks.
A unique property of size-resolved metal nanocluster particles is their superatom-like electronic shell structure. The shell levels are highly degenerate, and it has been predicted that this can enable exceptionally strong superconducting-type electr
Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors suppo
We study a superconducting hetro-junction with one side characterized by the unconventional chiral $p$-wave gap function $p_xpm ip_y$ and the other side the conventional $s$-wave one. Though a relative phase of $pm frac{pi}{2}$ between any two compon
We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the $(sqrt{3} times sqrt{3}) R 30^{circ
We suggest to use `fluctuation spectroscopy as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature $T$ the resistance $R(T)$ of a system of relatively large grains initial