ﻻ يوجد ملخص باللغة العربية
Iron selenide (FeSe) - the structurally simplest iron-based superconductor, has attracted tremendous interest in the past years. While the transition temperature (Tc) of bulk FeSe is $sim$ 8 K, it can be significantly enhanced to 40 - 50 K by various ways of electron doping. However, the underlying physics for such great enhancement of Tc and so the Cooper pairing mechanism still remain puzzles. Here, we report a systematic study of the superconducting- and normal-state properties of FeSe films via ionic liquid gating. With fine tuning, Tc evolves continuously from below 10 K to above 40 K; in situ two-coil mutual inductance measurements unambiguously confirm the gating is a uniform bulk effect. Close to Tc, the normal-state resistivity shows a linear dependence on temperature and the linearity extends to lower temperatures with the superconductivity suppressed by high magnetic fields. At high fields, the normal-state magnetoresistance exhibits a linear-in-field dependence and obeys a simple scaling relation between applied field and temperature. Consistent behaviors are observed for different-Tc states throughout the gating process, suggesting the pairing mechanism very likely remains the same from low- to high-Tc state. Importantly, the coefficient of the linear-in-temperature resistivity is positively correlated with Tc, similarly to the observations in cuprates, Bechgaard salts and iron pnictide superconductors. Our study points to a short-range antiferromagnetic exchange interaction mediated pairing mechanism in FeSe.
In this study, we investigated the gate voltage dependence of $T_{mathrm c}$ in electrochemically etched FeSe films with an electric-double layer transistor structure. The $T_{mathrm c}^{mathrm {zero}}$ value of the etched FeSe films with a lower gat
Searching for superconducting materials with high transition temperature (TC) is one of the most exciting and challenging fields in physics and materials science. Although superconductivity has been discovered for more than 100 years, the copper oxid
The cuprates and iron-based high-temperature superconductors share many common features: layered strongly anisotropic crystal structure, strong electronic correlations, interplay between different types of electronic ordering, the intrinsic spatial i
We have studied the effect of tensile strain on the superconductivity in FeSe films. 50 nm, 100 nm, and 200 nm FeSe films were grown on MgO, SrTiO$_3$, and LaAlO$_3$ substrates by using a pulsed laser deposition technique. X-ray diffraction analysis
There is an ongoing debate about the relative importance of structural change versus doping charge carriers on the mechanism of superconductivity in Fe-based materials. Elucidating this issue is a major challenge since it would require a large number