ﻻ يوجد ملخص باللغة العربية
We have studied the effect of tensile strain on the superconductivity in FeSe films. 50 nm, 100 nm, and 200 nm FeSe films were grown on MgO, SrTiO$_3$, and LaAlO$_3$ substrates by using a pulsed laser deposition technique. X-ray diffraction analysis showed that the tetragonal phase is dominant in all of our FeSe films. The 50 nm FeSe films on MgO and SrTiO$_3$ are under tensile strain, while the 50 nm FeSe film on LaAlO$_3$ and the other thick FeSe films are unstrained. Superconducting transitions have been observed in unstrained FeSe films with T$_{onset}$ $approx$ 8 K, which is close to the bulk value. However, no sign of superconductivity has been observed in FeSe films under tensile strain down to 5 K. There is evidence to show that tensile strain suppresses superconductivity in FeSe films.
Single-layer FeSe films with extremely expanded in-plane lattice constant of 3.99A are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures, and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron
There is an ongoing debate about the relative importance of structural change versus doping charge carriers on the mechanism of superconductivity in Fe-based materials. Elucidating this issue is a major challenge since it would require a large number
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetot
FeSe is a unique superconductor that can be manipulated to enhance its superconductivity using different routes while its monolayer form grown on different substrates reaches a record high temperature for a two-dimensional system. In order to underst
Stabilized FeSe thin films in ambient pressure with tunable superconductivity would be a promising candidate for superconducting electronic devices yet its superconducting transition temperature (Tc) is below 10 K in bulk materials. By carefully cont