ﻻ يوجد ملخص باللغة العربية
Contextuality can either be synthetically defined in terms of outcome conditionality on the measurement conditions, or in terms of non-classical probability distributions. Another logico-algebraic strong form of contextuality characterizes collections of quantum observables that have no faithfully embedding into (extended) Boolean algebras. Any of these forms indicate a classical in- or underdetermination that can be termed value indefinite, and formalized by partial functions of theoretical computer sciences. he term contextual by indeterminate or value indefinite in the spirit of partial functions of theoretical computer sciences.
Quantum non-Gaussian states represent an important class of highly non-classical states whose preparation requires quantum operations or measurements beyond the class of Gaussian operations and statistical mixing. Here we derive criteria for certific
We show, under natural assumptions for qubit systems, that measurement-based quantum computations (MBQCs) which compute a non-linear Boolean function with high probability are contextual. The class of contextual MBQCs includes an example which is of
Contextuality is often referred to as a generalization of non-locality. In this work, using the hypergraph approach for contextuality we show how to associate a contextual scenario to a general k-partite non local game, and consider the reverse direc
In this letter we generalize Spekkens notion of measurement non-contextuality (NC). We show that any non-contextual ontological model based on this notion of contextuality fails to explain the statistics of outcomes of a single carefully constructed
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea