ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum non-Gaussianity criteria based on vacuum probabilities of original and attenuated state

59   0   0.0 ( 0 )
 نشر من قبل Jaromir Fiurasek
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum non-Gaussian states represent an important class of highly non-classical states whose preparation requires quantum operations or measurements beyond the class of Gaussian operations and statistical mixing. Here we derive criteria for certification of quantum non-Gaussianity based on probability of vacuum in the original quantum state and a state transmitted through a lossy channel with transmittance T. We prove that the criteria hold for arbitrary multimode states, which is important for their applicability in experiments with broadband sources and single-photon detectors. Interestingly, our approach allows to detect quantum non-Gaussianity using only one photodetector instead of complex multiplexed photon detection schemes, at the cost of increased experimental time. We also formulate a quantum non-Gaussianity criterion based on the vacuum probability and mean photon number of the state and we show that this criterion is closely related to the criteria based on pair of vacuum probabilities. We illustrate the performance of the obtained criteria on the example of realistic imperfect single-photon states modeled as a mixture of vacuum and single-photon states with background Poissonian noise.



قيم البحث

اقرأ أيضاً

We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using various measures such as relative entropy and geometric distances. We first show that an intuitive approach, i.e., subtracting the correlation of a reference Gaussian state from that of a target non-Gaussian state, fails to yield a non-negative measure with monotonicity under local Gaussian channels. Our finding clearly manifests that quantum-state correlations generally have no Gaussian extremality. We therefore propose a different approach by introducing relevantly averaged states to address correlation. This enables us to define a non-Gaussianity measure based on, e.g., the trace-distance and the fidelity, fulfilling all requirements as a measure of non-Gaussian correlation. For the case of the fidelity-based measure, we also present readily computable lower bounds of non-Gaussian correlation.
54 - Karl Svozil 2021
Contextuality can either be synthetically defined in terms of outcome conditionality on the measurement conditions, or in terms of non-classical probability distributions. Another logico-algebraic strong form of contextuality characterizes collection s of quantum observables that have no faithfully embedding into (extended) Boolean algebras. Any of these forms indicate a classical in- or underdetermination that can be termed value indefinite, and formalized by partial functions of theoretical computer sciences. he term contextual by indeterminate or value indefinite in the spirit of partial functions of theoretical computer sciences.
No-cloning theorem, a profound fundamental principle of quantum mechanics, also provides a crucial practical basis for secure quantum communication. The security of communication can be ultimately guaranteed if the output fidelity via communication c hannel is above the no-cloning bound (NCB). In quantum communications using continuous-variable (CV) systems, Gaussian states, more specifically, coherent states have been widely studied as inputs, but less is known for non-Gaussian states. We aim at exploring quantum communication covering CV states comprehensively with distinct sets of unknown states properly defined. Our main results here are (i) to establish the NCB for a broad class of quantum non-Gaussian states including Fock states, their superpositions and Schrodinger-cat states and (ii) to examine the relation between NCB and quantum non-Gaussianity (QNG). We find that NCB typically decreases with QNG. Remarkably, this does not mean that quantum non-Gaussian states are less demanding for secure communication. By extending our study to mixed-state inputs, we demonstrate that QNG specifically in terms of Wigner negativity requires more resources to achieve output fidelity above NCB in CV teleportation. The more non-Gaussian, the harder to achieve secure communication, which can have crucial implications for CV quantum communications.
Quantum state smoothing is a technique for estimating the quantum state of a partially observed quantum system at time $tau$, conditioned on an entire observed measurement record (both before and after $tau$). However, this smoothing technique requir es an observer (Alice, say) to know the nature of the measurement records that are unknown to her in order to characterize the possible true states for Bobs (say) systems. If Alice makes an incorrect assumption about the set of true states for Bobs system, she will obtain a smoothed state that is suboptimal, and, worse, may be unrealizable (not corresponding to a valid evolution for the true states) or even unphysical (not represented by a state matrix $rhogeq0$). In this paper, we review the historical background to quantum state smoothing, and list general criteria a smoothed quantum state should satisfy. Then we derive, for the case of linear Gaussian quantum systems, a necessary and sufficient constraint for realizability on the covariance matrix of the true state. Naturally, a realizable covariance of the true state guarantees a smoothed state which is physical. It might be thought that any putative true covariance which gives a physical smoothed state would be a realizable true covariance, but we show explicitly that this is not so. This underlines the importance of the realizabilty constraint.
We introduce a measure of quantum non-Gaussianity (QNG) for those quantum states not accessible by a mixture of Gaussian states in terms of quantum relative entropy. Specifically, we employ a convex-roof extension using all possible mixed-state decom positions beyond the usual pure-state decompositions. We prove that this approach brings a QNG measure fulfilling the properties desired as a proper monotone under Gaussian channels and conditional Gaussian operations. As an illustration, we explicitly calculate QNG for the noisy single-photon states and demonstrate that QNG coincides with non-Gaussianity of the state itself when the single-photon fraction is sufficiently large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا