ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing quantum contextuality using a single measurement device by generalizing measurement non-contextuality

274   0   0.0 ( 0 )
 نشر من قبل Jaskaran Singh Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter we generalize Spekkens notion of measurement non-contextuality (NC). We show that any non-contextual ontological model based on this notion of contextuality fails to explain the statistics of outcomes of a single carefully constructed POVM executed sequentially on a quantum system. The POVM essentially forms a single measurement device. The context of measurement arises from the different configurations in which the device can be used. We develop an inequality from the non-contextual ontic model, and construct corresponding quantum situations where the measurement outcomes from the device violate this NC inequality. Our work brings out the hitherto unexplored implications of contextuality for a single measurement device, and paves the way for further study of consequences of contextuality for sequential measurements.



قيم البحث

اقرأ أيضاً

186 - Robert Raussendorf 2009
We show, under natural assumptions for qubit systems, that measurement-based quantum computations (MBQCs) which compute a non-linear Boolean function with high probability are contextual. The class of contextual MBQCs includes an example which is of practical interest and has a super-polynomial speedup over the best known classical algorithm, namely the quantum algorithm that solves the Discrete Log problem.
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea surements are jointly performed. Here, compatible measurements are those that can be performed simultaneously or in any order without disturbance. This conflict is generically called quantum contextuality. In this article, we present an introduction to this subject and its current status. We review several proofs of the Kochen-Specker theorem and different notions of contextuality. We explain how to experimentally test some of these notions and discuss connections between contextuality and nonlocality or graph theory. Finally, we review some applications of contextuality in quantum information processing.
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with $B$ and also with $C$, whereas $B$ and $C$ are incompatible, a measurement of $A$ might yield a different result (indicating that quantum mechanics is contextual) depending upon whether $A$ is measured along with $B$ (the ${A,B}$ context) or with $C$ (the ${A,C}$ context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell noncontextual: the outcome of a particular $A$ measurement when $A$ is measured along with $B$ would have been exactly the same if $A$ had, instead, been measured along with $C$. A different definition, here called `globally (non)contextual refers to whether or not there is (noncontextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well-defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus has a tensor product structure, a fact sometimes overlooked.
77 - Hippolyte Dourdent 2018
The notion of contextuality, which emerges from a theorem established by Simon Kochen and Ernst Specker (1960-1967) and by John Bell (1964-1966), is certainly one of the most fundamental aspects of quantum weirdness. If it is a questioning on scholas tic philosophy and a study of contrafactual logic that led Specker to his demonstration with Kochen, it was a criticism of von Neumanns proof that led John Bell to the result. A misinterpretation of this famous proof will lead them to diametrically opposite conclusions. Over the last decades, remarkable theoretical progresses have been made on the subject in the context of the study of quantum foundations and quantum information. Thus, the graphic generalizations of Cabello-Severini-Winter and Acin-Fritz-Leverrier-Sainz raise the question of the connection between non-locality and contextuality. It is also the case of the sheaf-theoretic approach of Samson Abramsky et al., which also invites us to compare contextuality with the logical structure of certain classical logical paradoxes. Another approach, initiated by Robert Spekkens, generalizes the concept to any type of experimental procedure. This new form of universal contextuality has been raised as a criterion of non-classicality, i.e. of weirdness. It notably led to identify the nature of curious quantum paradoxes involving post-selections and weak measurements. In the light of the fiftieth anniversary of the publication of the Kochen-Specker theorem, this report aims to introduce these results little known to the French scientific public, in the context of an investigation on the nature of the weirdness of quantum physics.
Contextuality is often referred to as a generalization of non-locality. In this work, using the hypergraph approach for contextuality we show how to associate a contextual scenario to a general k-partite non local game, and consider the reverse direc tion: how and when is it possible to represent a general contextuality scenario as a non local game. Using the notion of conditional contextuality, we show that it is possible to embed any contextual scenario in a two players non local game. We also discuss different equivalences of contextuality scenarios and show that the construction used in the proof is not optimal by giving a simpler bipartite non local game when the contextual scenario is a graph instead of a general hypergraph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا