ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser Driven Fluorescence Emission in a Nitrogen Gas Jet at 100 MHz Repetition Rate

100   0   0.0 ( 0 )
 نشر من قبل Jin Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fluorescence emission which is driven by femtosecond laser pulses with a repetition rate of 100 MHz and a center wavelength of 1040 nm in a nitrogen gas jet. The experiment is performed in a femtosecond enhancement cavity coupled with high repetition rate laser for the first time to the best of our knowledge. In contrast to previous observation at low repetition rate with a nitrogen gas jet, where the 391 nm radiation was observed but the 337 nm emission was missing, the 337 nm emission is 3 times stronger than the 391 nm emission in our experiment. By examining the dependence of the radiation intensity on the flow rate of the nitrogen gas and the polarization of the pump pulse, the formation mechanism of the N2(C3{Pi}u) triplet excited state, i.e., the upper state of the 337 nm emission, is investigated. We attribute the main excitation process to the inelastic collision excitation process, and exclude the possibility of the dissociative recombination as the dominate pathway. The role of the steady state plasma that is generated under our experimental conditions is also discussed.



قيم البحث

اقرأ أيضاً

We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibi ts strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.
Over the past years, ultrafast lasers with average powers in the 100 W range have become a mature technology, with a multitude of applications in science and technology. Nonlinear temporal compression of these lasers to few- or even single-cycle dura tion is often essential, yet still hard to achieve, in particular at high repetition rates. Here we report a two-stage system for compressing pulses from a 1030 nm ytterbium fiber laser to single-cycle durations with 5 ${mu}$J output pulse energy at 9.6 MHz repetition rate. In the first stage, the laser pulses are compressed from 340 to 25 fs by spectral broadening in a krypton-filled single-ring photonic crystal fiber (SR-PCF), subsequent phase compensation being achieved with chirped mirrors. In the second stage, the pulses are further compressed to single-cycle duration by soliton-effect self-compression in a neon-filled SR-PCF. We estimate a pulse duration of ~3.4 fs at the fiber output by numerically back-propagating the measured pulses. Finally, we directly measured a pulse duration of 3.8 fs (1.25 optical cycles) after compensating (using chirped mirrors) the dispersion introduced by the optical elements after the fiber, more than 50% of the total pulse energy being in the main peak. The system can produce compressed pulses with peak powers >0.6 GW and a total transmission exceeding 70%.
When an intense, few-cycle light pulse impinges on a dielectric or semiconductor material, the electric field will interact nonlinearly with the solid, driving a coherent current. An asymmetry of the ultrashort, carrier-envelope-phase-stable waveform results in a net transfer of charge, which can be measured by macroscopic electric contact leads. This effect has been pioneered with extremely short, single-cycle laser pulses at low repetition rate, thus limiting the applicability of its potential for ultrafast electronics. We investigate lightwave-driven currents in gallium nitride using few-cycle laser pulses of nearly twice the duration and at a repetition rate two orders of magnitude higher than in previous work. We successfully simulate our experimental data with a theoretical model based on interfering multiphoton transitions, using the exact laser pulse shape retrieved from dispersion-scan measurements. Substantially increasing the repetition rate and relaxing the constraint on the pulse duration marks an important step forward towards applications of lightwave-driven electronics.
Manipulating the atomic and electronic structure of matter with strong terahertz (THz) fields while probing the response with ultrafast pulses at x-ray free electron lasers (FELs) has offered unique insights into a multitude of physical phenomena in solid state and atomic physics. Recent upgrades of x-ray FEL facilities are pushing to much higher repetition rates, enabling unprecedented signal to noise for pump probe experiments. This requires the development of suitable THz pump sources that are able to deliver intense pulses at compatible repetition rates. Here we present a high power laser-driven THz source based on optical rectification in LiNbO3 using tilted pulse front pumping. Our source is driven by a kilowatt-level Yb:YAG amplifier system operating at 100 kHz repetition rate and employing nonlinear spectral broadening and recompression to achieve sub-100 fs pulses at 1030 nm wavelength. We demonstrate a maximum of 144 mW average THz power (1.44 uJ pulse energy), consisting of single-cycle pulses centered at 0.6 THz with a peak electric field strength exceeding 150 kV/cm. These high field pulses open up a range of possibilities for nonlinear time-resolved experiments with x-ray probing at unprecedented rates.
We consider a two-color formaldehyde PLIF thermometry scheme using a wavelength-switching injection seeding Nd:YAG laser at 355 nm. The 28183.5 cm-1 and 28184.5 cm-1 peaks of formaldehyde are used to measure low temperature combustion zone. Using a b urst mode amplifier and a high speed camera, high-repetition rate (20 kHz) temperature field measurement is validated on a laminar coflow diffusion flame and demonstrated on a turbulent confined jet in hot crossflow flame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا