ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling high repetition rate nonlinear THz science with a kilowatt-class sub-100 fs laser source

399   0   0.0 ( 0 )
 نشر من قبل Patrick Kramer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manipulating the atomic and electronic structure of matter with strong terahertz (THz) fields while probing the response with ultrafast pulses at x-ray free electron lasers (FELs) has offered unique insights into a multitude of physical phenomena in solid state and atomic physics. Recent upgrades of x-ray FEL facilities are pushing to much higher repetition rates, enabling unprecedented signal to noise for pump probe experiments. This requires the development of suitable THz pump sources that are able to deliver intense pulses at compatible repetition rates. Here we present a high power laser-driven THz source based on optical rectification in LiNbO3 using tilted pulse front pumping. Our source is driven by a kilowatt-level Yb:YAG amplifier system operating at 100 kHz repetition rate and employing nonlinear spectral broadening and recompression to achieve sub-100 fs pulses at 1030 nm wavelength. We demonstrate a maximum of 144 mW average THz power (1.44 uJ pulse energy), consisting of single-cycle pulses centered at 0.6 THz with a peak electric field strength exceeding 150 kV/cm. These high field pulses open up a range of possibilities for nonlinear time-resolved experiments with x-ray probing at unprecedented rates.



قيم البحث

اقرأ أيضاً

127 - Christophe Finot 2020
We propose and numerically validate an all-optical scheme to generate optical pulse trains with varying temporal pulse-to-pulse delay and pulse duration. Applying a temporal sinusoidal phase modulation followed by a shaping of the spectral phase enab les us to maintain high-quality Gaussian temporal profiles.
We experimentally demonstrate that the transmission of a 1030~nm, 1.3~ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.
A high repetition rate, picosecond THz parametric amplifier (TPA) with a LiNbO3 (LN) crystal has been demonstrated in this work. At 10 kHz repetition rate, a peak power of 200 W and an average power of 12 {mu}W have been obtained over a wide range ar ound 2 THz; at 100 kHz repetition rate, a maximum peak power of 18 W and average power of 10.8 {mu}W have been obtained. The parametric gain of the LN crystal was also investigated and a modified Schwarz-Maier model was introduced to interpret the experimental results.
We consider a two-color formaldehyde PLIF thermometry scheme using a wavelength-switching injection seeding Nd:YAG laser at 355 nm. The 28183.5 cm-1 and 28184.5 cm-1 peaks of formaldehyde are used to measure low temperature combustion zone. Using a b urst mode amplifier and a high speed camera, high-repetition rate (20 kHz) temperature field measurement is validated on a laminar coflow diffusion flame and demonstrated on a turbulent confined jet in hot crossflow flame.
We theoretically and experimentally demonstrate the generation of high-quality low duty-cycle pulse trains at repetition rates of 28 GHz, 56 GHz and 112 GHz. Starting from a continuous wave we benefit from phase modulations in the temporal and spectr al domains by applying a sinusoidal profile and a set of well-chosen $pi$ shifts, respectively, to generate a train of modified besselons at doubled repetition rate. With further nonlinear spectral expansion in a normally dispersive fiber followed by dispersion compensation we achieve subpicosecond durations and a duty cycle as low as 0.025 at 28 GHz. Spectral cancelation of one component over two or four enables to further double or quadruple the repetition rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا