ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon Free High Loading Silicon Anodes Enabled by Sulfide Solid Electrolytes for Robust All Solid-State Batteries

153   0   0.0 ( 0 )
 نشر من قبل Darren Tan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Darren H. S. Tan




اسأل ChatGPT حول البحث

The development of silicon anodes to replace conventional graphite in efforts to increase energy densities of lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. Here, stable operation of 99.9 weight% micro-Si (uSi) anode is enabled by utilizing the interface passivating properties of sulfide based solid-electrolytes. Bulk to surface characterization, as well as quantification of interfacial components showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. In uSi || layered-oxide full cells, high current densities at room temperature (5 mA cm 2), wide operating temperature (-20{deg}C to 80{deg}C) and high loadings (>11 mAh cm-2) were demonstrated for both charge and discharge operations. The promising battery performance can be attributed to both the desirable interfacial property between uSi and sulfide electrolytes, as well as the unique chemo-mechanical behavior of the Li-Si alloys.

قيم البحث

اقرأ أيضاً

Solid-state batteries (SSBs) can offer a paradigm shift in battery safety and energy density. Yet, the promise hinges on the ability to integrate high-performance electrodes with state-of-the-art solid electrolytes. For example, lithium (Li) metal, t he most energy-dense anode candidate, suffers from severe interfacial chemomechanical issues that lead to cell failure. Li alloys of In/Sn are attractive alternatives, but their exploration has mostly been limited to the low capacity(low Li content)and In rich Li$_x$In (x$leq$0.5). Here, the fundamental electro-chemo-mechanical behavior of Li-In and Li-Sn alloys of varied Li stoichiometries is unravelled in sulfide electrolyte based SSBs. The intermetallic electrodes developed through a controlled synthesis and fabrication technique display impressive (electro)chemical stability with Li$_6$PS$_5$Cl as the solid electrolyte and maintain nearly perfect interfacial contact during the electrochemical Li insertion/deinsertion under an optimal stack pressure. Their intriguing variation in the Li migration barrier with composition and its influence on the observed Li cycling overpotential is revealed through combined computational and electrochemical studies. Stable interfacial chemomechanics of the alloys allow long-term dendrite free Li cycling (>1000 h) at relatively high current densities (1 mA cm$^{-2}$) and capacities (1 mAh cm$^{-2}$), as demonstrated for Li$_{13}$In$_3$ and Li$_{17}$Sn$_4$, which are more desirable from a capacity and cost consideration compared to the low Li content analogues. The presented understanding can guide the development of high-capacity Li-In/Sn alloy anodes for SSBs.
Solid-state electrolytes for Li-ion batteries are attracting growing interest as they allow building safer batteries, also using lithium metal anodes. Here we studied a compound in the lithium superionic conductor (LISICON) family, i.e. Li4-xGe1-xPxO 4 (LGPO). Thin films were deposited via pulsed laser deposition and their electrical properties were compared with ceramic pellets. A detailed characterization of the micro structure shows that thin films can be deposited fully crystalline at higher temperatures but also partially amorphous at room temperature. The conductivity is not strongly influenced by the presence of grain boundaries, exposure to air or lithium deficiencies. First-principles molecular dynamics simulations were employed to calculate the lithium ion diffusion profile and the conductivity at various temperatures of the ideal LGPO crystal. Simulations gives the upper limit of conductivity for a defect free crystal, which is in the range of 10-2 S cm-1 at 300 deg. The ease of thin film fabrication, the room-temperature Li-ion conductivity in the range of a few microS cm-1 make LGPO a very appealing electrolyte material for thin film all-solid-state all-oxide microbatteries.
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called pl astic crystals (PCs) have been shown to be good candidates combining high conductivity and favourable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. Here we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimised revolving door mechanism, open a new path towards the development of better solid-state electrolytes.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an at omic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO$^t$Bu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li$_2$PO$_2$N between 250 and 300$^circ$C. The P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON which closely resembles a polyphosphazene. Films grown at 300$^circ$C have an ionic conductivity of $6.51:(pm0.36)times10^{-7}$ S/cm at 35$^circ$C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li$^+$. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO$_2$ as the cathode and Si as the anode operating at up to 1 mA/cm$^2$. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<100nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.
Management of heat during charging and discharging of Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the materials comprising batteries is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (oxides, sulfides, and halides) over the temperature range 150-350 K. Studies include the oxides Li1.5Al0.5Ge1.5(PO4)3 and Li6.4La3Zr1.4Ta0.6O12, sulfides Li2S-P2S5, Li6PS5Cl, and Na3PS4, and halides Li3InCl6 and Li3YCl6. Thermal conductivities of sulfide and halide solid electrolytes are in the range 0.45-0.70 W m-1 K-1; thermal conductivities of Li6.4La3Zr1.4Ta0.6O12 and Li1.5Al0.5Ge1.5(PO4)3 are 1.4 W m-1 K-1 and 2.2 W m-1 K-1, respectively. For most of the solid electrolytes studied in this work, the thermal conductivity increases with increasing temperature; i.e., the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating the phonon mean-free-paths in these solid electrolytes are close to an atomic spacing. We attribute the low, glass-like thermal conductivity of the solid electrolytes investigated to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا