ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated Deep Q-learning based Microgrid Energy Management

88   0   0.0 ( 0 )
 نشر من قبل Hao Zhou Mr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Microgrid (MG) energy management is an important part of MG operation. Various entities are generally involved in the energy management of an MG, e.g., energy storage system (ESS), renewable energy resources (RER) and the load of users, and it is crucial to coordinate these entities. Considering the significant potential of machine learning techniques, this paper proposes a correlated deep Q-learning (CDQN) based technique for the MG energy management. Each electrical entity is modeled as an agent which has a neural network to predict its own Q-values, after which the correlated Q-equilibrium is used to coordinate the operation among agents. In this paper, the Long Short Term Memory networks (LSTM) based deep Q-learning algorithm is introduced and the correlated equilibrium is proposed to coordinate agents. The simulation result shows 40.9% and 9.62% higher profit for ESS agent and photovoltaic (PV) agent, respectively.

قيم البحث

اقرأ أيضاً

Microgrids (MG) are anticipated to be important players in the future smart grid. For proper operation of MGs an Energy Management System (EMS) is essential. The EMS of an MG could be rather complicated when renewable energy resources (RER), energy s torage system (ESS) and demand side management (DSM) need to be orchestrated. Furthermore, these systems may belong to different entities and competition may exist between them. Nash equilibrium is most commonly used for coordination of such entities however the convergence and existence of Nash equilibrium can not always be guaranteed. To this end, we use the correlated equilibrium to coordinate agents, whose convergence can be guaranteed. In this paper, we build an energy trading model based on mid-market rate, and propose a correlated Q-learning (CEQ) algorithm to maximize the revenue of each agent. Our results show that CEQ is able to balance the revenue of agents without harming total benefit. In addition, compared with Q-learning without correlation, CEQ could save 19.3% cost for the DSM agent and 44.2% more benefits for the ESS agent.
As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the filed of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction m odule used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we present the standard DRL-based energy management scheme with and without prediction. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.
In this paper, we introduce a deep learning aided constraint encoding method to tackle the frequency-constraint microgrid scheduling problem. The nonlinear function between system operating condition and frequency nadir is approximated by using a neu ral network, which admits an exact mixed-integer formulation (MIP). This formulation is then integrated with the scheduling problem to encode the frequency constraint. With the stronger representation power of the neural network, the resulting commands can ensure adequate frequency response in a realistic setting in addition to islanding success. The proposed method is validated on a modified 33-node system. Successful islanding with a secure response is simulated under the scheduled commands using a detailed three-phase model in Simulink. The advantages of our model are particularly remarkable when the inertia emulation functions from wind turbine generators are considered.
Q learning is widely used to simulate the behaviors of generation companies (GenCos) in an electricity market. However, existing Q learning method usually requires numerous iterations to converge, which is time-consuming and inefficient in practice. To enhance the calculation efficiency, a novel Q learning algorithm improved by dichotomy is proposed in this paper. This method modifies the update process of the Q table by dichotomizing the state space and the action space step by step. Simulation results in a repeated Cournot game show the effectiveness of the proposed algorithm.
118 - Xinan Wang , Yishen Wang , Di Shi 2019
With the increasing complexity of modern power systems, conventional dynamic load modeling with ZIP and induction motors (ZIP + IM) is no longer adequate to address the current load characteristic transitions. In recent years, the WECC composite load model (WECC CLM) has shown to effectively capture the dynamic load responses over traditional load models in various stability studies and contingency analyses. However, a detailed WECC CLM model typically has a high degree of complexity, with over one hundred parameters, and no systematic approach to identifying and calibrating these parameters. Enabled by the wide deployment of PMUs and advanced deep learning algorithms, proposed here is a double deep Q-learning network (DDQN)-based, two-stage load modeling framework for the WECC CLM. This two-stage method decomposes the complicated WECC CLM for more efficient identification and does not require explicit model details. In the first stage, the DDQN agent determines an accurate load composition. In the second stage, the parameters of the WECC CLM are selected from a group of Monte-Carlo simulations. The set of selected load parameters is expected to best approximate the true transient responses. The proposed framework is verified using an IEEE 39-bus test system on commercial simulation platforms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا