ﻻ يوجد ملخص باللغة العربية
Microgrids (MG) are anticipated to be important players in the future smart grid. For proper operation of MGs an Energy Management System (EMS) is essential. The EMS of an MG could be rather complicated when renewable energy resources (RER), energy storage system (ESS) and demand side management (DSM) need to be orchestrated. Furthermore, these systems may belong to different entities and competition may exist between them. Nash equilibrium is most commonly used for coordination of such entities however the convergence and existence of Nash equilibrium can not always be guaranteed. To this end, we use the correlated equilibrium to coordinate agents, whose convergence can be guaranteed. In this paper, we build an energy trading model based on mid-market rate, and propose a correlated Q-learning (CEQ) algorithm to maximize the revenue of each agent. Our results show that CEQ is able to balance the revenue of agents without harming total benefit. In addition, compared with Q-learning without correlation, CEQ could save 19.3% cost for the DSM agent and 44.2% more benefits for the ESS agent.
Microgrid (MG) energy management is an important part of MG operation. Various entities are generally involved in the energy management of an MG, e.g., energy storage system (ESS), renewable energy resources (RER) and the load of users, and it is cru
Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional mode
The paper is concerned with distributed learning in large-scale games. The well-known fictitious play (FP) algorithm is addressed, which, despite theoretical convergence results, might be impractical to implement in large-scale settings due to intens
In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for
One of the challenges for multi-agent reinforcement learning (MARL) is designing efficient learning algorithms for a large system in which each agent has only limited or partial information of the entire system. In this system, it is desirable to lea