ترغب بنشر مسار تعليمي؟ اضغط هنا

Impedance spectroscopy and conduction mechanism of a BiFe$_{0.95}$Mn$_{0.05}$O$_3$ thin film

141   0   0.0 ( 0 )
 نشر من قبل Said Yousfi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric response and conduction mechanism were investigated for a multiferroic BiFe$_{0.95}$Mn$_{0.05}$O$_3$ epitaxial thin film. A contribution from a thermally activated interface (0.37 eV) and the bulk of the film on the dielectric response were observed through the comparison between experimental results and equivalent circuit model. The low frequency interface relaxation signatures strongly suggest a Maxwell-Wagner space charge origin. The alternative current conductivity deduced from the model follows a power law frequency dependence suggesting a polaronic hopping mechanism while the low frequency limit is in perfect agreement with the direct current conduction mechanism. The current-voltage characteristics were indeed correlated with Schottky-Simmons interface limited transport with activation energy of 0.36 eV, close to the one extracted from the impedance analysis. Such analysis of the electrostatic landscape and dielectric behaviour may help to further understanding the anomalous photo-induced properties in the BiFeO$_3$ system.



قيم البحث

اقرأ أيضاً

Epitaxial 200nm BiFe$_{0.95}$Mn$_{0.05}$O$_{3}$ (BFO) film was grown by pulsed laser deposition on (111) oriented SrTiO3 substrate buffered with a 50nm thick SrRuO$_{3}$ electrode. The BFO thin film shows a rhombohedral structure and a large remnant polarization of Pr = 104 $mu$C/cm$^{2}$. By comparing I(V) characteristics with different conduction models we reveal the presence of both bulk limited Poole-Frenkel and Schottky interface mechanisms and each one dominates in a specific range of temperature. At room temperature and under 10mW laser illumination, the as grown BFO film presents short-circuit current density (Jsc) and open circuit voltage (Voc) of 2.25mA/cm$^{2}$ and -0.55V respectively. This PV effect can be switched by applying positive voltage pulses higher than the coercive field. For low temperatures a large Voc value of about -4.5V (-225kV/cm) is observed which suggests a bulk non-centrosymmetric origin of the PV response.
The temperature dependent resistance $R$($T$) of polycrystalline ferromagnetic CoFeB thin films of varying thickness are analyzed considering various electrical scattering processes. We observe a resistance minimum in $R$($T$) curves below $simeq$ 29 K, which can be explained as an effect of intergranular Coulomb interaction in a granular system. The structural and Coulomb interaction related scattering processes contribute more as the film thickness decreases implying the role of disorder and granularity. Although the magnetic contribution to the resistance is the weakest compared to these two, it is the only thickness independent process. On the contrary, the negative coefficient of resistance can be explained by electron interaction effect in disordered amorphous films.
184 - Tomoya Higo , Danru Qu , Yufan Li 2018
The Weyl antiferromagnet Mn$_3$Sn has recently attracted significant attention as it exhibits various useful functions such as large anomalous Hall effect that are normally absent in antiferromagnets. Here we report the thin film fabrication of the s ingle phase of Mn$_3$Sn and the observation of the large anomalous Hall effect at room temperature despite its vanishingly small magnetization. Our work on the high-quality thin film growth of the Weyl antiferromagnet paves the path for developing the antiferromagnetic spintronics.
Employing elastic and inelastic neutron scattering (INS) techniques, we report on detailed microscopic properties of the ferromagnetism in he magnetic topological insulator (Bi$_{0.95}$Mn$_{0.05}$)$_{2}$Te$_{3}$. Neutron diffraction of polycrystallin e samples show the ferromagnetic (FM) ordering is long-range within the basal plane, and mainly 2D in character with short-range correlations between layers below $T_{mathrm{C}} approx 13$ K. Despite the random distribution of the dliute Mn atoms, we find that the 2D-like magnetic peaks are commensurate with the chemical structure, and the absence of (00L) magnetic peaks denote that the Mn$^{2+}$ magnetic moments are normal to the basal planes. Surprisingly, we observed collective magnetic excitations, in this dilute magnetic system. Despite the dilute nature, the excitations are typical of quasi-2D FM systems, albeit are severely broadened at short wavelengths, likely due to the random spatial distribution of Mn atoms in the Bi planes. Detailed analysis of the INS provide energy scales of the exchange couplings and the single ion anisotropy.
The two dimensional kagome spin lattice structure of Mn atoms in the family of Mn$_3$X non-collinear antiferromagnets are providing substantial excitement in the exploration of Berry curvature physics and the associated non-trivial magnetotransport r esponses. Much of these studies are performed in the hexagonal systems, mainly Mn$_3$Sn and Mn$_3$Ge, with the kagome planes having their normal along the [001] direction. In this manuscript, we report our study in the cubic Mn$_3$Pt thin films with their kagome planes normal to the [111] crystal axis. Our studies reveal a hole conduction dominant Hall response with a non-monotonic temperature dependence of anomalous Hall conductivity (AHC), increasing from 9 $Omega^{-1}$cm$^{-1}$ at room temperature to 29 $Omega^{-1}$cm$^{-1}$ at 100 K, followed by a drop and unexpected sign-reversal at lower temperatures. Similar sign reversal is also observed in magnetoresistance measurements. We attribute this sign reversal to the transition from a Berry curvature dominated AHC at high temperature to a weak canted ferromagnetic AHC response at lower temperature, below 70 K, caused by the reorientation of Mn moments out of the kagome plane. Our above results in thin films of Mn$_3$Pt make advances in their integration with room temperature antiferromagnetic spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا