ﻻ يوجد ملخص باللغة العربية
Epitaxial 200nm BiFe$_{0.95}$Mn$_{0.05}$O$_{3}$ (BFO) film was grown by pulsed laser deposition on (111) oriented SrTiO3 substrate buffered with a 50nm thick SrRuO$_{3}$ electrode. The BFO thin film shows a rhombohedral structure and a large remnant polarization of Pr = 104 $mu$C/cm$^{2}$. By comparing I(V) characteristics with different conduction models we reveal the presence of both bulk limited Poole-Frenkel and Schottky interface mechanisms and each one dominates in a specific range of temperature. At room temperature and under 10mW laser illumination, the as grown BFO film presents short-circuit current density (Jsc) and open circuit voltage (Voc) of 2.25mA/cm$^{2}$ and -0.55V respectively. This PV effect can be switched by applying positive voltage pulses higher than the coercive field. For low temperatures a large Voc value of about -4.5V (-225kV/cm) is observed which suggests a bulk non-centrosymmetric origin of the PV response.
Dielectric response and conduction mechanism were investigated for a multiferroic BiFe$_{0.95}$Mn$_{0.05}$O$_3$ epitaxial thin film. A contribution from a thermally activated interface (0.37 eV) and the bulk of the film on the dielectric response wer
Strain engineering with different substrate facets is promising for tuning functional properties of thin film perovskite oxides. By choice of facet, different surface symmetries and chemical bond directions for epitaxial interfaces can be tailored. H
Employing elastic and inelastic neutron scattering (INS) techniques, we report on detailed microscopic properties of the ferromagnetism in he magnetic topological insulator (Bi$_{0.95}$Mn$_{0.05}$)$_{2}$Te$_{3}$. Neutron diffraction of polycrystallin
Relaxor behavior and lattice dynamics have been studied for a single crystal of K$_{1-x}$Li$_x$TaO$_3$ $(x=0.05)$, where a small amount of a Ca impurity ($sim 15$~ppm) was incorporated. The dielectric measurements revealed Debye-like relaxations with
Aluminum scandium nitride alloy (Al1-xScxN) is regarded as a promising material for high-performance acoustic devices used in wireless communication systems. Phonon scattering and heat conduction processes govern the energy dissipation in acoustic re