ترغب بنشر مسار تعليمي؟ اضغط هنا

Sign reversal of anomalous Hall conductivity and magnetoresistance in cubic non-collinear antiferromagnet Mn$_3$Pt thin films

75   0   0.0 ( 0 )
 نشر من قبل Joynarayan Mukherjee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two dimensional kagome spin lattice structure of Mn atoms in the family of Mn$_3$X non-collinear antiferromagnets are providing substantial excitement in the exploration of Berry curvature physics and the associated non-trivial magnetotransport responses. Much of these studies are performed in the hexagonal systems, mainly Mn$_3$Sn and Mn$_3$Ge, with the kagome planes having their normal along the [001] direction. In this manuscript, we report our study in the cubic Mn$_3$Pt thin films with their kagome planes normal to the [111] crystal axis. Our studies reveal a hole conduction dominant Hall response with a non-monotonic temperature dependence of anomalous Hall conductivity (AHC), increasing from 9 $Omega^{-1}$cm$^{-1}$ at room temperature to 29 $Omega^{-1}$cm$^{-1}$ at 100 K, followed by a drop and unexpected sign-reversal at lower temperatures. Similar sign reversal is also observed in magnetoresistance measurements. We attribute this sign reversal to the transition from a Berry curvature dominated AHC at high temperature to a weak canted ferromagnetic AHC response at lower temperature, below 70 K, caused by the reorientation of Mn moments out of the kagome plane. Our above results in thin films of Mn$_3$Pt make advances in their integration with room temperature antiferromagnetic spintronics.

قيم البحث

اقرأ أيضاً

Antiferromagnetic spin motion at terahertz (THz) frequencies attracts growing interests for fast spintronics, however their smaller responses to external field inhibit device application. Recently the noncollinear antiferromagnet Mn$_3$Sn, a Weyl sem imetal candidate, was reported to show large anomalous Hall effect (AHE) at room temperature comparable to ferromagnets. Dynamical aspect of such large responses is an important issue to be clarified for future THz data processing. Here the THz anomalous Hall conductivity in Mn$_3$Sn thin films is investigated by polarization-resolved spectroscopy. Large anomalous Hall conductivity Re $sigma_{xy} (omega) sim$ 20 $rm{Omega^{-1} cm^{-1}}$ at THz frequencies is clearly observed as polarization rotation. In contrast, Im $sigma_{xy} (omega)$ is small up to a few THz, showing that the AHE remains dissipationless over a large frequency range. A peculiar temperature dependence corresponding to the breaking/recovery of symmetry in the spin texture is also discussed. Observation of the THz AHE at room temperature demonstrates the ultrafast readout for the antiferromagnetic spintronics using Mn$_3$Sn and will also open new avenue for studying nonequilibrium dynamics in Weyl antiferromagnets.
96 - Xin Chen , Hang Xie , Qi Zhang 2021
We report on Cr doping effect in Mn3Sn polycrystalline films with both uniform and modulation doping. It is found that Cr doping with low concentration does not cause notable changes to the structural and magnetic properties of Mn3Sn, but it signific antly enhances the anomalous Hall conductivity, particularly for modulation-doped samples at low temperature. A Hall conductivity as high as 184.8 {Omega}-1 cm-1 is obtained for modulation-doped samples at 50 K, in a sharp contrast to vanishingly small values for undoped samples at the same temperature. We attribute the enhancement to the change of Fermi level induced by Cr doping
Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO$_2$. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
184 - Tomoya Higo , Danru Qu , Yufan Li 2018
The Weyl antiferromagnet Mn$_3$Sn has recently attracted significant attention as it exhibits various useful functions such as large anomalous Hall effect that are normally absent in antiferromagnets. Here we report the thin film fabrication of the s ingle phase of Mn$_3$Sn and the observation of the large anomalous Hall effect at room temperature despite its vanishingly small magnetization. Our work on the high-quality thin film growth of the Weyl antiferromagnet paves the path for developing the antiferromagnetic spintronics.
We have studied the anomalous Hall effect (AHE) in strained thin films of the frustrated antiferromagnet Mn$_{3}$NiN. The AHE does not follow the conventional relationships with magnetization or longitudinal conductivity and is enhanced relative to t hat expected from the magnetization in the antiferromagnetic state below $T_{mathrm{N}} = 260$,K. This enhancement is consistent with origins from the non-collinear antiferromagnetic structure, as the latter is closely related to that found in Mn$_{3}$Ir and Mn$_{3}$Pt where a large AHE is induced by the Berry curvature. As the Berry phase induced AHE should scale with spin-orbit coupling, yet larger AHE may be found in other members of the chemically flexible Mn$_{3}A$N structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا