ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum routing with fast reversals

153   0   0.0 ( 0 )
 نشر من قبل Eddie Schoute
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present methods for implementing arbitrary permutations of qubits under interaction constraints. Our protocols make use of previous methods for rapidly reversing the order of qubits along a path. Given nearest-neighbor interactions on a path of length $n$, we show that there exists a constant $epsilon approx 0.034$ such that the quantum routing time is at most $(1-epsilon)n$, whereas any swap-based protocol needs at least time $n-1$. This represents the first known quantum advantage over swap-based routing methods and also gives improved quantum routing times for realistic architectures such as grids. Furthermore, we show that our algorithm approaches a quantum routing time of $2n/3$ in expectation for uniformly random permutations, whereas swap-based protocols require time $n$ asymptotically. Additionally, we consider sparse permutations that route $k le n$ qubits and give algorithms with quantum routing time at most $n/3 + O(k^2)$ on paths and at most $2r/3 + O(k^2)$ on general graphs with radius $r$.



قيم البحث

اقرأ أيضاً

A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum information processing, communication and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam-splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding $100,mathrm{MHz}$, is capable of handling photon fluxes on the order of $10^{5},mumathrm{s}^{-1}$, equivalent to powers exceeding $-90,mathrm{dBm}$, and can be switched within approximately $6-8,mathrm{ns}$. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route non-classical itinerant microwave fields at the single-photon level.
225 - Simon Apers 2019
Expansion testing aims to decide whether an $n$-node graph has expansion at least $Phi$, or is far from any such graph. We propose a quantum expansion tester with complexity $widetilde{O}(n^{1/3}Phi^{-1})$. This accelerates the $widetilde{O}(n^{1/2}P hi^{-2})$ classical tester by Goldreich and Ron [Algorithmica 02], and combines the $widetilde{O}(n^{1/3}Phi^{-2})$ and $widetilde{O}(n^{1/2}Phi^{-1})$ quantum speedups by Ambainis, Childs and Liu [RANDOM 11] and Apers and Sarlette [QIC 19], respectively. The latter approach builds on a quantum fast-forwarding scheme, which we improve upon by initially growing a seed set in the graph. To grow this seed set we use a so-called evolving set process from the graph clustering literature, which allows to grow an appropriately local seed set.
Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. With a real-space full quantum theory, photonic scattering amplitudes along four ports of the wavegu ide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. For example, the routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing as a novel router.
We establish general limits on how precise a parameter, e.g. frequency or the strength of a magnetic field, can be estimated with the aid of full and fast quantum control. We consider uncorrelated noisy evolutions of N qubits and show that fast contr ol allows to fully restore the Heisenberg scaling (~1/N^2) for all rank-one Pauli noise except dephasing. For all other types of noise the asymptotic quantum enhancement is unavoidably limited to a constant-factor improvement over the standard quantum limit (~1/N) even when allowing for the full power of fast control. The latter holds both in the single-shot and infinitely-many repetitions scenarios. However, even in this case allowing for fast quantum control helps to increase the improvement factor. Furthermore, for frequency estimation with finite resource we show how a parallel scheme utilizing any fixed number of entangled qubits but no fast quantum control can be outperformed by a simple, easily implementable, sequential scheme which only requires entanglement between one sensing and one auxiliary qubit.
We present an approach to purification and entanglement routing on complex quantum network architectures, that is, how a quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between us ers. We explore how network parameters influence the performance of path-finding algorithms necessary for optimizing routing and, in particular, we explore the interplay between the bandwidth of a quantum channels and the choice of purification protocol. Finally, we demonstrate multi-path routing on various network topologies with resource constraints, in an effort to inform future design choices for quantum network configurations. Our work optimizes both the choice of path over the quantum network and the choice of purification schemes used between nodes. We consider not only pair-production rate, but optimize over the fidelity of the delivered entangled state. We introduce effective heuristics enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network, with performance comparable to that of a computationally-expensive brute-force path search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا