ترغب بنشر مسار تعليمي؟ اضغط هنا

Purification and Entanglement Routing on Quantum Networks

114   0   0.0 ( 0 )
 نشر من قبل Prineha Narang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an approach to purification and entanglement routing on complex quantum network architectures, that is, how a quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users. We explore how network parameters influence the performance of path-finding algorithms necessary for optimizing routing and, in particular, we explore the interplay between the bandwidth of a quantum channels and the choice of purification protocol. Finally, we demonstrate multi-path routing on various network topologies with resource constraints, in an effort to inform future design choices for quantum network configurations. Our work optimizes both the choice of path over the quantum network and the choice of purification schemes used between nodes. We consider not only pair-production rate, but optimize over the fidelity of the delivered entangled state. We introduce effective heuristics enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network, with performance comparable to that of a computationally-expensive brute-force path search.



قيم البحث

اقرأ أيضاً

155 - W. Dur , H. J. Briegel 2007
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum communication, where we emphasize its close relation to quantum error correction. Various bipartite and multipartite entanglement purification protocols are discussed, and their performance under idealized and realistic conditions is studied. Several applications of entanglement purification in quantum communication and computation are presented, which highlights the fact that entanglement purification is a fundamental tool in quantum information processing.
High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a k ey role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in table-top. Here we propose and report a high-efficiency and long-distance entanglement purification using only one pair of hyperentangled states. We also demonstrate its practical application in entanglement-based quantum key distribution (QKD). One pair of polarization spatial-mode hyperentanglement was distributed over 11 km multicore fiber (noisy channel). After purification, the fidelity of polarization entanglement arises from 0.771 to 0.887 and the effective key rate in entanglement-based QKD increases from 0 to 0.332. The values of Clauser-Horne-Shimony-Holt (CHSH) inequality of polarization entanglement arises from 1.829 to 2.128. Moreover, by using one pair of hyperentanglement and deterministic controlled-NOT gate, the total purification efficiency can be estimated as 6.6x10^3 times than the experiment using two pairs of entangled states with spontaneous parametric down-conversion (SPDC) sources. Our results offer the potential to be implemented as part of a full quantum repeater and large scale quantum network.
We study the routing of quantum information in parallel on multi-dimensional networks of tunable qubits and oscillators. These theoretical models are inspired by recent experiments in superconducting circuits using Josephson junctions and resonators. We show that perfect parallel state transfer is possible for certain networks of harmonic oscillator modes. We further extend this to the distribution of entanglement between every pair of nodes in the network, finding that the routing efficiency of hypercube networks is both optimal and robust in the presence of dissipation and finite bandwidth.
The entanglement resource required for quantum information processing comes in a variety of forms, from Bell states to multipartite GHZ states or cluster states. Purifying these resources after their imperfect generation is an indispensable step towa rds using them in quantum architectures. While this challenge, both in the case of Bell pairs and more general multipartite entangled states, is mostly overcome in the presence of perfect local quantum hardware with unconstrained qubit register sizes, devising optimal purification strategies for finite-size realistic noisy hardware has remained elusive. Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years. We present cases where the hardware limitations are taken into account, and surprisingly find that smaller `sacrificial states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states. This drastically simplifies the requirements and presents a fundamentally new pathway to leverage near term networked quantum hardware.
We have applied an entanglement purification protocol to produce a single entangled pair of photons capable of violating a CHSH Bell inequality from two pairs that individually could not. The initial poorly-entangled photons were created by a control lable decoherence that introduced complex errors. All of the states were reconstructed using quantum state tomography which allowed for a quantitative description of the improvement of the state after purification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا