ﻻ يوجد ملخص باللغة العربية
Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. With a real-space full quantum theory, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. For example, the routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing as a novel router.
We theoretically study the properties of highly prolate shaped dielectric microresonators. Such resonators sustain whispering gallery modes that exhibit two spatially well separated regions with enhanced field strength. The field per photon on the re
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other w
We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED paramete
We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whisp
We theoretically propose a scheme to realize rotation sensing based on two coupled whispering-gallery-mode resonators with loss and gain. We consider that the active resonator with gain is rotated while the passive one with loss is stationary. The ro