ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry Violation of Quantum Multifractality: Gaussian fluctuations versus Algebraic Localization

219   0   0.0 ( 0 )
 نشر من قبل Ignacio Garcia-Mata
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum multifractality is a fundamental property of systems such as non-interacting disordered systems at an Anderson transition and many-body systems in Hilbert space. Here we discuss the origin of the presence or absence of a fundamental symmetry related to this property. The anomalous multifractal dimension $Delta_q$ is used to characterize the structure of quantum states in such systems. Although the multifractal symmetry relation mbox{$Delta_q=Delta_{1-q}$} is universally fulfilled in many known systems, recently some important examples have emerged where it does not hold. We show that this is the result of two different mechanisms. The first one was already known and is related to Gaussian fluctuations well described by random matrix theory. The second one, not previously explored, is related to the presence of an algebraically localized envelope. While the effect of Gaussian fluctuations can be removed by coarse graining, the second mechanism is robust to such a procedure. We illustrate the violation of the symmetry due to algebraic localization on two systems of very different nature, a 1D Floquet critical system and a model corresponding to Anderson localization on random graphs.



قيم البحث

اقرأ أيضاً

197 - Bettina Heim 2014
The strongest evidence for superiority of quantum annealing on spin glass problems has come from comparing simulated quantum annealing using quantum Monte Carlo (QMC) methods to simulated classical annealing [G. Santoro et al., Science 295, 2427(2002 )]. Motivated by experiments on programmable quantum annealing devices we revisit the question of when quantum speedup may be expected for Ising spin glass problems. We find that even though a better scaling compared to simulated classical annealing can be achieved for QMC simulations, this advantage is due to time discretization and measurements which are not possible on a physical quantum annealing device. QMC simulations in the physically relevant continuous time limit, on the other hand, do not show superiority. Our results imply that care has to be taken when using QMC simulations to assess quantum speedup potential and are consistent with recent arguments that no quantum speedup should be expected for two-dimensional spin glass problems.
94 - Thorsten B. Wahl 2017
We prove that all eigenstates of many-body localized symmetry protected topological systems with time reversal symmetry have four-fold degenerate entanglement spectra in the thermodynamic limit. To that end, we employ unitary quantum circuits where t he number of sites the gates act on grows linearly with the system size. We find that the corresponding matrix product operator representation has similar local symmetries as matrix product ground states of symmetry protected topological phases. Those local symmetries give rise to a $mathbb{Z}_2$ topological index, which is robust against arbitrary perturbations so long as they do not break time reversal symmetry or drive the system out of the fully many-body localized phase.
We analyze the effects of disorder on the correlation functions of one-dimensional quantum models of fermions and spins with long-range interactions that decay with distance $ell$ as a power-law $1/ell^alpha$. Using a combination of analytical and nu merical results, we demonstrate that power-law interactions imply a long-distance algebraic decay of correlations within disordered-localized phases, for all exponents $alpha$. The exponent of algebraic decay depends only on $alpha$, and not, e.g., on the strength of disorder. We find a similar algebraic localization for wave-functions. These results are in contrast to expectations from short-range models and are of direct relevance for a variety of quantum mechanical systems in atomic, molecular and solid-state physics.
We investigate the possibility to control localization properties of the asymptotic state of an open quantum system with a tunable synthetic dissipation. The control mechanism relies on the matching between properties of dissipative operators, acting on neighboring sites and specified by a single control parameter, and the spatial phase structure of eigenstates of the system Hamiltonian. As a result, the latter coincide (or near coincide) with the dark states of the operators. In a disorder-free Hamiltonian with a flat band, one can either obtain a localized asymptotic state or populate whole flat and/or dispersive bands, depending on the value of the control parameter. In a disordered Anderson system, the asymptotic state can be localized anywhere in the spectrum of the Hamiltonian. The dissipative control is robust with respect to an additional local dephasing.
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across the many-body localization transition (MBLT) in a disordered spi n chain, and use it to characterize the breakdown of the eigenstate thermalization hypothesis and to extract the many-body Thouless energy. We find a wide critical region around the MBLT, where Thouless energy becomes smaller than the level spacing, while matrix elements show critical dependence on the energy difference. In the same region, matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values, and shed light on the critical behaviour of MBL systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا