ﻻ يوجد ملخص باللغة العربية
We analyze the effects of disorder on the correlation functions of one-dimensional quantum models of fermions and spins with long-range interactions that decay with distance $ell$ as a power-law $1/ell^alpha$. Using a combination of analytical and numerical results, we demonstrate that power-law interactions imply a long-distance algebraic decay of correlations within disordered-localized phases, for all exponents $alpha$. The exponent of algebraic decay depends only on $alpha$, and not, e.g., on the strength of disorder. We find a similar algebraic localization for wave-functions. These results are in contrast to expectations from short-range models and are of direct relevance for a variety of quantum mechanical systems in atomic, molecular and solid-state physics.
Many-body localization is a fascinating theoretical concept describing the intricate interplay of quantum interference, i.e. localization, with many-body interaction induced dephasing. Numerous computational tests and also several experiments have be
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to s
We study transport of interacting electrons in a low-dimensional disordered system at low temperature $T$. In view of localization by disorder, the conductivity $sigma(T)$ may only be non-zero due to electron-electron scattering. For weak interaction
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renor
In one-dimensional electronic systems with strong repulsive interactions, charge excitations propagate much faster than spin excitations. Such systems therefore have an intermediate temperature range [termed the spin-incoherent Luttinger liquid (SILL