ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing sensitivity in absorption spectroscopy using a scattering cavity

393   0   0.0 ( 0 )
 نشر من قبل YongKeun Park
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Absorption spectroscopy is widely used to detect samples with spectral specificity. Here, we propose and demonstrate a method for enhancing the sensitivity of absorption spectroscopy. Exploiting multiple light scattering generated by a boron nitride (h-BN) scattering cavity, the optical path lengths of light inside a diffusive reflective cavity are significantly increased, resulting in more than ten times enhancement of sensitivity in absorption spectroscopy. We demonstrate highly sensitive spectral measurements of low concentrations of malachite green and crystal violet aqueous solutions. Because this method only requires the addition of a scattering cavity to existing absorption spectroscopy, it is expected to enable immediate and widespread applications in various fields, from analytical chemistry to environmental sciences.



قيم البحث

اقرأ أيضاً

Aperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the e quivalent periodic array. We focus on the modes of such clusters and show that the reduced symmetry associated with cluster formation allows external coupling into modes which are dark in periodic arrays, thus increasing absorption. To exploit such modes fully, arrays must include tightly clustered NWs that are unlikely to arise from fabrication variations but must be created intentionally.
218 - H. N. Yum , J. Scheuer , M. Salit 2013
A passive white light cavity (WLC) based on a fiber resonator can be used for high-bandwidth optical data buffering. Here, we report on experimental studies of such a WLC, employing stimulated Brillouin scattering (SBS)for producing the negative disp ersion, using two different configurations. In one configuration, an absorption peak produced by a Brillouin pump is used. In the other configuration, two gain peaks produced by two separate Brillouin pumps are employed. In each case, we see evidence of the WLC effect. However, the range of parameters accessible experimentally limits the degree of the WLC effect significantly. We present a theoretical analysis for the optimal combinations of parameters, such as a high Brillouin gain coefficient and a low transmission loss, necessary for achieving the condition of a vanishing group index, as required for creating an ideal WLC.
We present broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), a technique for calibration-free determination of the complex refractive index of entire molecular bands via direct measurement of transmission modes of a Fabry-Per ot cavity filled with the sample. The measurement of the cavity transmission spectrum is done using an optical frequency comb and a mechanical Fourier transform spectrometer with sub-nominal resolution. Molecular absorption and dispersion spectra (corresponding to the imaginary and real parts of the refractive index) are obtained from the cavity mode broadening and shift retrieved from fits of Lorentzian profiles to the individual cavity modes. This method is calibration-free because the mode broadening and shift are independent of the cavity parameters such as the length and mirror reflectivity. In this first demonstration of broadband CE-CRIS we measure simultaneously the absorption and dispersion spectra of three combination bands of CO2 in the range between 1525 nm and 1620 nm and achieve good agreement with theoretical models. This opens up for precision spectroscopy of the complex refractive index of several molecular bands simultaneously.
We characterize the frequency-sensitivity of a cavity-stabilized laser to inertial forces and temperature fluctuations, and perform real-time feed-forward to correct for these sources of noise. We measure the sensitivity of the cavity to linear accel erations, rotational accelerations, and rotational velocities by rotating it about three axes with accelerometers and gyroscopes positioned around the cavity. The worst-direction linear acceleration sensitivity of the cavity is $2(1) times 10^{-11}$/g measured over 0-50 Hz, which is reduced by a factor of 50 to below $10^{-12}$/g for low-frequency accelerations by real-time feed-forward corrections of all of the aforementioned inertial forces. A similar idea is demonstrated in which laser frequency drift due to temperature fluctuations is reduced by a factor of 70 via real-time feed-forward from a temperature sensor located on the outer wall of the cavity vacuum chamber.
Broadband ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D spectroscopy, are widely used to study molecular dynamics. However, these techniques are typically restricted to optically thick samples, such as solid s and liquid solutions. In this article we discuss a cavity-enhanced ultrafast transient absorption spectrometer covering almost the entire visible range with a detection limit of $Delta$OD $ < 1 times 10^{-9}$, extending broadband all-optical ultrafast spectroscopy techniques to dilute beams of gas-phase molecules and clusters. We describe the technical innovations behind the spectrometer and present transient absorption data on two archetypical molecular systems for excited-state intramolecular proton transfer, 1-hydroxy-2-acetonapthone and salicylideneaniline, under jet-cooled and Ar cluster conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا