ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Context-Aware Multimodal Framework for Persian Sentiment Analysis

78   0   0.0 ( 0 )
 نشر من قبل Mandar Gogate
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most recent works on sentiment analysis have exploited the text modality. However, millions of hours of video recordings posted on social media platforms everyday hold vital unstructured information that can be exploited to more effectively gauge public perception. Multimodal sentiment analysis offers an innovative solution to computationally understand and harvest sentiments from videos by contextually exploiting audio, visual and textual cues. In this paper, we, firstly, present a first of its kind Persian multimodal dataset comprising more than 800 utterances, as a benchmark resource for researchers to evaluate multimodal sentiment analysis approaches in Persian language. Secondly, we present a novel context-aware multimodal sentiment analysis framework, that simultaneously exploits acoustic, visual and textual cues to more accurately determine the expressed sentiment. We employ both decision-level (late) and feature-level (early) fusion methods to integrate affective cross-modal information. Experimental results demonstrate that the contextual integration of multimodal features such as textual, acoustic and visual features deliver better performance (91.39%) compared to unimodal features (89.24%).

قيم البحث

اقرأ أيضاً

Social media hold valuable, vast and unstructured information on public opinion that can be utilized to improve products and services. The automatic analysis of such data, however, requires a deep understanding of natural language. Current sentiment analysis approaches are mainly based on word co-occurrence frequencies, which are inadequate in most practical cases. In this work, we propose a novel hybrid framework for concept-level sentiment analysis in Persian language, that integrates linguistic rules and deep learning to optimize polarity detection. When a pattern is triggered, the framework allows sentiments to flow from words to concepts based on symbolic dependency relations. When no pattern is triggered, the framework switches to its subsymbolic counterpart and leverages deep neural networks (DNN) to perform the classification. The proposed framework outperforms state-of-the-art approaches (including support vector machine, and logistic regression) and DNN classifiers (long short-term memory, and Convolutional Neural Networks) with a margin of 10-15% and 3-4% respectively, using benchmark Persian product and hotel reviews corpora.
Sentiment Analysis and Emotion Detection in conversation is key in several real-world applications, with an increase in modalities available aiding a better understanding of the underlying emotions. Multi-modal Emotion Detection and Sentiment Analysi s can be particularly useful, as applications will be able to use specific subsets of available modalities, as per the available data. Current systems dealing with Multi-modal functionality fail to leverage and capture - the context of the conversation through all modalities, the dependency between the listener(s) and speaker emotional states, and the relevance and relationship between the available modalities. In this paper, we propose an end to end RNN architecture that attempts to take into account all the mentioned drawbacks. Our proposed model, at the time of writing, out-performs the state of the art on a benchmark dataset on a variety of accuracy and regression metrics.
Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
In multimodal sentiment analysis (MSA), the performance of a model highly depends on the quality of synthesized embeddings. These embeddings are generated from the upstream process called multimodal fusion, which aims to extract and combine the input unimodal raw data to produce a richer multimodal representation. Previous work either back-propagates the task loss or manipulates the geometric property of feature spaces to produce favorable fusion results, which neglects the preservation of critical task-related information that flows from input to the fusion results. In this work, we propose a framework named MultiModal InfoMax (MMIM), which hierarchically maximizes the Mutual Information (MI) in unimodal input pairs (inter-modality) and between multimodal fusion result and unimodal input in order to maintain task-related information through multimodal fusion. The framework is jointly trained with the main task (MSA) to improve the performance of the downstream MSA task. To address the intractable issue of MI bounds, we further formulate a set of computationally simple parametric and non-parametric methods to approximate their truth value. Experimental results on the two widely used datasets demonstrate the efficacy of our approach. The implementation of this work is publicly available at https://github.com/declare-lab/Multimodal-Infomax.
307 - Hang Yan , Junqi Dai , Tuo ji 2021
Aspect-based Sentiment Analysis (ABSA) aims to identify the aspect terms, their corresponding sentiment polarities, and the opinion terms. There exist seven subtasks in ABSA. Most studies only focus on the subsets of these subtasks, which leads to va rious complicated ABSA models while hard to solve these subtasks in a unified framework. In this paper, we redefine every subtask target as a sequence mixed by pointer indexes and sentiment class indexes, which converts all ABSA subtasks into a unified generative formulation. Based on the unified formulation, we exploit the pre-training sequence-to-sequence model BART to solve all ABSA subtasks in an end-to-end framework. Extensive experiments on four ABSA datasets for seven subtasks demonstrate that our framework achieves substantial performance gain and provides a real unified end-to-end solution for the whole ABSA subtasks, which could benefit multiple tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا