ﻻ يوجد ملخص باللغة العربية
Social media hold valuable, vast and unstructured information on public opinion that can be utilized to improve products and services. The automatic analysis of such data, however, requires a deep understanding of natural language. Current sentiment analysis approaches are mainly based on word co-occurrence frequencies, which are inadequate in most practical cases. In this work, we propose a novel hybrid framework for concept-level sentiment analysis in Persian language, that integrates linguistic rules and deep learning to optimize polarity detection. When a pattern is triggered, the framework allows sentiments to flow from words to concepts based on symbolic dependency relations. When no pattern is triggered, the framework switches to its subsymbolic counterpart and leverages deep neural networks (DNN) to perform the classification. The proposed framework outperforms state-of-the-art approaches (including support vector machine, and logistic regression) and DNN classifiers (long short-term memory, and Convolutional Neural Networks) with a margin of 10-15% and 3-4% respectively, using benchmark Persian product and hotel reviews corpora.
Most recent works on sentiment analysis have exploited the text modality. However, millions of hours of video recordings posted on social media platforms everyday hold vital unstructured information that can be exploited to more effectively gauge pub
This paper proposes an enhanced natural language generation system combining the merits of both rule-based approaches and modern deep learning algorithms, boosting its performance to the extent where the generated textual content is capable of exhibi
Sentiment analysis is attracting more and more attentions and has become a very hot research topic due to its potential applications in personalized recommendation, opinion mining, etc. Most of the existing methods are based on either textual or visu
Aspect-based Sentiment Analysis (ABSA) aims to identify the aspect terms, their corresponding sentiment polarities, and the opinion terms. There exist seven subtasks in ABSA. Most studies only focus on the subsets of these subtasks, which leads to va
Structured sentiment analysis attempts to extract full opinion tuples from a text, but over time this task has been subdivided into smaller and smaller sub-tasks, e,g,, target extraction or targeted polarity classification. We argue that this divisio