ﻻ يوجد ملخص باللغة العربية
In two-way time-of-arrival (TOA) systems, a user device (UD) obtains its position by round-trip communications to a number of anchor nodes (ANs) at known locations. The objective function of the maximum likelihood (ML) method for two-way TOA localization is nonconvex. Thus, the widely-adopted Gauss-Newton iterative method to solve the ML estimator usually suffers from the local minima problem. In this paper, we convert the original estimator into a convex problem by relaxation, and develop a new semidefinite programming (SDP) based localization method for moving UDs, namely SDP-M. Numerical result demonstrates that compared with the iterative method, which often fall into local minima, the SDP-M always converge to the global optimal solution and significantly reduces the localization error by more than 40%. It also has stable localization accuracy regardless of the UD movement, and outperforms the conventional method for stationary UDs, which has larger error with growing UD velocity.
In two-way time-of-arrival (TOA) systems, a user device (UD) obtains its position and timing information by round-trip communications to a number of anchor nodes (ANs) at known locations. Compared with the one-way TOA technique, the two-way TOA schem
Positioning with one single communication between base stations and user devices can effectively save air time and thus expand the user volume to infinite. However, this usually demands accurate synchronization between base stations. Wireless synchro
In this article, we design a new time-of-arrival (TOA) system for simultaneous user device (UD) localization and synchronization with a periodic asymmetric ranging network, namely PARN. The PARN includes one primary anchor node (PAN) transmitting and
Some important indoor localization applications, such as localizing a lost kid in a shopping mall, call for a new peer-to-peer localization technique that can localize an individuals smartphone or wearables by directly using anothers on-body devices
Semidefinite Programming (SDP) is a class of convex optimization programs with vast applications in control theory, quantum information, combinatorial optimization and operational research. Noisy intermediate-scale quantum (NISQ) algorithms aim to ma