ﻻ يوجد ملخص باللغة العربية
An important goal of medical imaging is to be able to precisely detect patterns of disease specific to individual scans; however, this is challenged in brain imaging by the degree of heterogeneity of shape and appearance. Traditional methods, based on image registration to a global template, historically fail to detect variable features of disease, as they utilise population-based analyses, suited primarily to studying group-average effects. In this paper we therefore take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution (FA). Specifically, we explore the use of a VAE-GAN translation network called ICAM, to explicitly disentangle class relevant features from background confounds for improved interpretability and regression of neurological phenotypes. We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimers Disease Neuroimaging Initiative (ADNI) cohort, as well as brain age prediction, for both neurodevelopment and neurodegeneration, using the developing Human Connectome Project (dHCP) and UK Biobank datasets. We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space. Our code is freely available on Github https://github.com/CherBass/ICAM.
Feature attribution (FA), or the assignment of class-relevance to different locations in an image, is important for many classification problems but is particularly crucial within the neuroscience domain, where accurate mechanistic models of behaviou
As our population ages, neurological impairments and degeneration of the musculoskeletal system yield gait abnormalities, which can significantly reduce quality of life. Gait rehabilitative therapy has been widely adopted to help patients maximize co
Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We i
Feature attribution methods, proposed recently, help users interpret the predictions of complex models. Our approach integrates feature attributions into the objective function to allow machine learning practitioners to incorporate priors in model bu
Accurate face detection and facial landmark localization are crucial to any face recognition system. We present a series of three single-stage RCNNs with different sized backbones (MobileNetV2-25, MobileNetV2-100, and ResNet101) and a six-layer featu