ترغب بنشر مسار تعليمي؟ اضغط هنا

A low-rank projector-splitting integrator for the Vlasov--Maxwell equations with divergence correction

372   0   0.0 ( 0 )
 نشر من قبل Chiara Piazzola
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Vlasov--Maxwell equations are used for the kinetic description of magnetized plasmas. As they are posed in an up to 3+3 dimensional phase space, solving this problem is extremely expensive from a computational point of view. In this paper, we exploit the low-rank structure in the solution of the Vlasov equation. More specifically, we consider the Vlasov--Maxwell system and propose a dynamic low-rank integrator. The key idea is to approximate the dynamics of the system by constraining it to a low-rank manifold. This is accomplished by a projection onto the tangent space. There, the dynamics is represented by the low-rank factors, which are determined by solving lower-dimensional partial differential equations. The proposed scheme performs well in numerical experiments and succeeds in capturing the main features of the plasma dynamics. We demonstrate this good behavior for a range of test problems. The coupling of the Vlasov equation with the Maxwell system, however, introduces additional challenges. In particular, the divergence of the electric field resulting from Maxwells equations is not consistent with the charge density computed from the Vlasov equation. We propose a correction based on Lagrange multipliers which enforces Gauss law up to machine precision.

قيم البحث

اقرأ أيضاً

Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but is extremely expensive from a computational point of view. In the present paper we propose a dynamical low-rank approximation to the Vlasov--Poisson equation, with time integration by a particular splitting method. This approximation is derived by constraining the dynamics to a manifold of low-rank functions via a tangent space projection and by splitting this projection into the subprojections from which it is built. This reduces a time step for the six- (or four-) dimensional Vlasov--Poisson equation to solving two systems of three- (or two-) dimensional advection equations over the time step, once in the position variables and once in the velocity variables, where the size of each system of advection equations is equal to the chosen rank. By a hierarchical dynamical low-rank approximation, a time step for the Vlasov--Poisson equation can be further reduced to a set of six (or four) systems of one-dimensional advection equations, where the size of each system of advection equations is still equal to the rank. The resulting systems of advection equations can then be solved by standard techniques such as semi-Lagrangian or spectral methods. Numerical simulations in two and four dimensions for linear Landau damping, for a two-stream instability and for a plasma echo problem highlight the favorable behavior of this numerical method and show that the proposed algorithm is able to drastically reduce the required computational effort.
The primary challenge in solving kinetic equations, such as the Vlasov equation, is the high-dimensional phase space. In this context, dynamical low-rank approximations have emerged as a promising way to reduce the high computational cost imposed by such problems. However, a major disadvantage of this approach is that the physical structure of the underlying problem is not preserved. In this paper, we propose a dynamical low-rank algorithm that conserves mass, momentum, and energy as well as the corresponding continuity equations. We also show how this approach can be combined with a conservative time and space discretization.
82 - Haoran Liu , Michael Neilan , 2021
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur e space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
In this paper, we analyse a new exponential-type integrator for the nonlinear cubic Schrodinger equation on the $d$ dimensional torus $mathbb T^d$. The scheme has recently also been derived in a wider context of decorated trees in [Y. Bruned and K. S chratz, arXiv:2005.01649]. It is explicit and efficient to implement. Here, we present an alternative derivation, and we give a rigorous error analysis. In particular, we prove second-order convergence in $H^gamma(mathbb T^d)$ for initial data in $H^{gamma+2}(mathbb T^d)$ for any $gamma > d/2$. This improves the previous work in [Knoller, A. Ostermann, and K. Schratz, SIAM J. Numer. Anal. 57 (2019), 1967-1986]. The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.
For the solution of the cubic nonlinear Schrodinger equation in one space dimension, we propose and analyse a fully discrete low-regularity integrator. The scheme is explicit and can easily be implemented using the fast Fourier transform with a compl exity of $mathcal{O}(Nlog N)$ operations per time step, where $N$ denotes the degrees of freedom in the spatial discretisation. We prove that the new scheme provides an $mathcal{O}(tau^{frac32gamma-frac12-varepsilon}+N^{-gamma})$ error bound in $L^2$ for any initial data belonging to $H^gamma$, $frac12<gammaleq 1$, where $tau$ denotes the temporal step size. Numerical examples illustrate this convergence behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا