ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of collectivity in $^{98}$Zr by absolute transition rates

61   0   0.0 ( 0 )
 نشر من قبل Noam Gavrielov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Lifetimes of low-spin excited states in $^{98}$Zr were measured using the recoil-distance Doppler-shift technique and the Doppler-shift attenuation method. The nucleus of interest was populated in a $^{96}$Zr($^{18}$O,$^{16}$O)$^{98}$Zr two-neutron transfer reaction at the Cologne FN Tandem accelerator. Lifetimes of six low-spin excited states, of which four are unknown, were measured. The deduced $B(E2)$ values were compared with Monte Carlo shell model and interacting boson model with configuration mixing calculations. Both approaches reproduce well most of the data but leave challenging questions regarding the structure of some low lying states.


قيم البحث

اقرأ أيضاً

The lifetimes of first excited 2$^+$, 4$^+$ and 6$^+$ states in $^{98}$Zr were measured with the Recoil-Distance Doppler Shift method in an experiment performed at GANIL. Excited states in $^{98}$Zr were populated using the fission reaction between a 6.2 MeV/u $^{238}$U beam and a $^{9}$Be target. The $gamma$ rays were detected with the EXOGAM array in correlation with the fission fragments identified in mass and atomic number in the VAMOS++ spectrometer. Our result shows very small B(E2;2$_1^+$ $rightarrow$ 0$_1^+$) value in $^{98}$Zr thereby confirming the very sudden onset of collectivity at $N=60$. The experimental results are compared to large-scale Monte Carlo Shell model and beyond mean field calculations. The present results indicate coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.
Background: Type II shell evolution has recently been identified as a microscopic cause for nuclear shape coexistence. Purpose: Establish a low-lying rotational band in 96-Zr. Methods: High-resolution inelastic electron scattering and a relative anal ysis of transition strengths are used. Results: The B(E2; 0_1^+ -> 2_2^+) value is measured and electromagnetic decay strengths of the secdond 2^+ state are deduced. Conclusions: Shape coexistence is established for 96-Zr. Type II shell evolution provides a systematic and quantitative mechanism to understand deformation at low excitation energies.
97 - R. Winkler , A. Gade , T. Baugher 2012
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei uc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isot opes, a critical region of shell evolution and structural change. The deduced $B(E2)$ transition strengths are confronted with large-scale shell-model calculations in the $sdpf$ shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.
178 - A. Hamaker 2021
Protons and neutrons in the atomic nucleus move in shells analogous to the electronic shell structures of atoms. Nuclear shell structure varies across the nuclear landscape due to changes of the nuclear mean field with the number of neutrons $N$ and protons $Z$. These variations can be probed with mass differences. The $N=Z=40$ self-conjugate nucleus $^{80}$Zr is of particular interest as its proton and neutron shell structures are expected to be very similar, and its ground state is highly deformed. In this work, we provide evidence for the existence of a deformed double shell closure in $^{80}$Zr through high precision Penning trap mass measurements of $^{80-83}$Zr. Our new mass values show that $^{80}$Zr is significantly lighter, and thus more bound than previously determined. This can be attributed to the deformed shell closure at $N=Z=40$ and the large Wigner energy. Our statistical Bayesian model mixing analysis employing several global nuclear mass models demonstrates difficulties with reproducing the observed mass anomaly using current theory.
103 - W.Rother , A.Dewald , H.Iwasaki 2010
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutro n-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا