ﻻ يوجد ملخص باللغة العربية
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei uc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced $B(E2)$ transition strengths are confronted with large-scale shell-model calculations in the $sdpf$ shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutro
Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be dealt with in an {it ab initio} framework without the use of effective charges; for example with the proper evolution of operato
The reduced transition probability B(E2) of the first excited 2+ state in the nucleus 104Sn was measured via Coulomb excitation in inverse kinematics at intermediate energies. A value of 0.163(26) e^2b^2 was extracted from the absolute cross-section
Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region a
The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-en