ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of the boundary integral method for interfacial Stokes flow

115   0   0.0 ( 0 )
 نشر من قبل Michael Siegel
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Boundary integral numerical methods are among the most accurate methods for interfacial Stokes flow, and are widely applied. They have the advantage that only the boundary of the domain must be discretized, which reduces the number of discretization points and allows the treatment of complicated interfaces. Despite their popularity, there is no analysis of the convergence of these methods for interfacial Stokes flow. In practice, the stability of discretizations of the boundary integral formulation can depend sensitively on details of the discretization and on the application of numerical filters. We present a convergence analysis of the boundary integral method for Stokes flow, focusing on a rather general method for computing the evolution of an elastic capsule, viscous drop, or inviscid bubble in 2D strain and shear flows. The analysis clarifies the role of numerical filters in practical computations.



قيم البحث

اقرأ أيضاً

In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms.
82 - Haoran Liu , Michael Neilan , 2021
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur e space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
We consider a multiphysics model for the flow of Newtonian fluid coupled with Biot consolidation equations through an interface, and incorporating total pressure as an unknown in the poroelastic region. A new mixed-primal finite element scheme is pro posed solving for the pairs fluid velocity - pressure and displacement - total poroelastic pressure using Stokes-stable elements, and where the formulation does not require Lagrange multipliers to set up the usual transmission conditions on the interface. The stability and well-posedness of the continuous and semi-discrete problems are analysed in detail. Our numerical study {is framed in} the context of different interfacial flow regimes in Cartesian and axisymmetric coordinates that could eventually help describe early morphologic changes associated with glaucoma development in canine species.
68 - Trung Nguyen 2021
Regula Falsi, or the method of false position, is a numerical method for finding an approximate solution to f(x) = 0 on a finite interval [a, b], where f is a real-valued continuous function on [a, b] and satisfies f(a)f(b) < 0. Previous studies prov ed the convergence of this method under certain assumptions about the function f, such as both the first and second derivatives of f do not change the sign on the interval [a, b]. In this paper, we remove those assumptions and prove the convergence of the method for all continuous functions.
Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) cite{wan11} for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with $mathrm{ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bounds on the approximation error of deep $mathrm{ReLU}^2$ network in $H^1$ norm and on the Rademacher complexity of the non-Lipschitz composition of gradient norm and $mathrm{ReLU}^2$ network, both of which are of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا