ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of the continuity constants for Bogovskiu{i} and regularized Poincare integral operators

98   0   0.0 ( 0 )
 نشر من قبل Abner Salgado
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dependence of the continuity constants for the regularized Poincare and Bogovskiu{i} integral operators acting on differential forms defined on a domain $Omega$ of $mathbb{R}^n$. We, in particular, study the dependence of such constants on certain geometric characteristics of the domain when these operators are considered as mappings from (a subset of) $L^2(Omega,Lambda^ell)$ to $H^1(Omega,Lambda^{ell-1})$, $ell in {1, ldots, n}$. For domains $Omega$ that are star shaped with respect to a ball $B$ we study the dependence of the constants on the ratio $diam(Omega)/diam(B)$. A program on how to develop estimates for higher order Sobolev norms is presented. The results are extended to certain classes of unions of star shaped domains.

قيم البحث

اقرأ أيضاً

82 - Yunyun Ma , Fuming Ma , Yukun Guo 2021
This paper is devoted to the computation of transmission eigenvalues in the inverse acoustic scattering theory. This problem is first reformulated as a two by two boundary system of boundary integral equations. Next, utilizing the Schur complement te chnique, we develop a Schur complement operator with regularization to obtain a reduced system of boundary integral equations. The Nystr{o}m discretization is then used to obtain an eigenvalue problem for a matrix. We employ the recursive integral method for the numerical computation of the matrix eigenvalue. Numerical results show that the proposed method is efficient and reduces computational costs.
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself. We prove new frequency-explicit bounds on the norms of both the integral operator and its inverse. The bounds on the norm are valid for piecewise-smooth $Gamma$ and are sharp, and the bounds on the norm of the inverse are valid for smooth $Gamma$ and are observed to be sharp at least when $Gamma$ is curved. Together, these results give bounds on the condition number of the operator on $L^2(Gamma)$; this is the first time $L^2(Gamma)$ condition-number bounds have been proved for this operator for obstacles other than balls.
Formulas relating Poincare-Steklov operators for Schroedinger equations related by Darboux-Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
66 - Jan Rozendaal 2020
We prove mapping properties of pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable. We show that the associated pseudodifferential operator $a(x,D)$ maps between Sobolev spaces $mathcal{H}^{s,p}_{FIO}(mathbb{R}^{n})$ and $mathcal{H}^{t,p}_{FIO}(mathbb{R}^{n})$ over the Hardy space for Fourier integral operators $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$. Our main result implies that for $m=0$, $delta=1/2$ and $r>n-1$, $a(x,D)$ acts boundedly on $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$ for all $pin(1,infty)$.
70 - Jan Rozendaal 2021
We obtain new local smoothing estimates for the Euclidean wave equation on $mathbb{R}^{n}$, by replacing the space of initial data by a Hardy space for Fourier integral operators. This improves the bounds in the local smoothing conjecture for $pgeq 2 (n+1)/(n-1)$, and complements them for $2<p<2(n+1)/(n-1)$. These estimates are invariant under application of Fourier integral operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا