ﻻ يوجد ملخص باللغة العربية
The analysis of quantitative hemodynamics and luminal pressure may add valuable information to aid treatment strategies and prognosis for aortic dissections. This work directly compared in vitro 4D-flow magnetic resonance imaging (MRI), catheter-based pressure measurements, and computational fluid dynamics that integrated fluid-structure interaction (CFD FSI). Experimental data was acquired with a compliant 3D-printed model of a type-B aortic dissection (TBAD) that was embedded into a physiologically tuned flow circuit. In vitro flow and pressure information were used to tune the CFD FSI Windkessel boundary conditions. Results showed very good overall agreement of complex flow patterns, true to false lumen flow splits, and pressure distribution. This work demonstrates feasibility of a tunable experimental setup that integrates a patient-specific compliant model and provides a test bed for exploring critical imaging and modeling parameters that ultimately may improve the prognosis for patients with aortic dissections.
The aortic valve is a three-leaflet passive structure that, driven by pressure differences between the left ventricle and the aorta, opens and closes during the heartbeat to ensure the correct stream direction and flow rate. In elderly individuals or
Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid
Soft hydraulics, which addresses the interaction between an internal flow and a compliant conduit, is a central problem in microfluidics. We analyze Newtonian fluid flow in a rectangular duct with a soft top wall at steady state. The resulting fluid-
Sand traps are used to measure Aeolian flux. Since they modify the surrounding wind velocity field their gauging represents an important challenge. We use numerical simulations under the assumption of homogeneous turbulence based on FLUENT to systema
Long, shallow microchannels embedded in thick soft materials are widely used in microfluidic devices for lab-on-a-chip applications. However, the bulging effect caused by fluid--structure interactions between the internal viscous flow and the soft wa