ﻻ يوجد ملخص باللغة العربية
Sand traps are used to measure Aeolian flux. Since they modify the surrounding wind velocity field their gauging represents an important challenge. We use numerical simulations under the assumption of homogeneous turbulence based on FLUENT to systematically study the flow field and trapping efficiency of one of the most common devices based on a hollow cylinder with two slits. In particular, we investigate the dependence on the wind speed, the Stokes number, the permeability of the membrane on the slit and the saltation height.
A direct numerical simulation (DNS) of a channel flow with one curved surface was performed at moderate Reynolds number (Re_tau = 395 at the inlet). The adverse pressure gradient was obtained by a wall curvature through a mathematical mapping from ph
Most fluid flow problems that are vital in engineering applications involve at least one of the following features: turbulence, shocks, and/or material interfaces. While seemingly different phenomena, these flows all share continuous generation of hi
Cardiovascular diseases, specifically cerebral aneurysms, represent a major cause of morbidity and mortality, having a significant impact on the cost and overall status of health care. In the present work, we employ a haemorheological blood model ori
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPH
Rod bundle flows are commonplace in nuclear engineering, and are present in light water reactors (LWRs) as well as other more advanced concepts. Inhomogeneities in the bundle cross section can lead to complex flow phenomena, including varying local c