ﻻ يوجد ملخص باللغة العربية
Accurate simulations of flows in stellar interiors are crucial to improving our understanding of stellar structure and evolution. Because the typically slow flows are merely tiny perturbations on top of a close balance between gravity and the pressure gradient, such simulations place heavy demands on numerical hydrodynamics schemes. We demonstrate how discretization errors on grids of reasonable size can lead to spurious flows orders of magnitude faster than the physical flow. Well-balanced numerical schemes can deal with this problem. Three such schemes were applied in the implicit, finite-volume Seven-League Hydro (SLH) code in combination with a low-Mach-number numerical flux function. We compare how the schemes perform in four numerical experiments addressing some of the challenges imposed by typical problems in stellar hydrodynamics. We find that the $alpha$-$beta$ and deviation well-balancing methods can accurately maintain hydrostatic solutions provided that gravitational potential energy is included in the total energy balance. They accurately conserve minuscule entropy fluctuations advected in an isentropic stratification, which enables the methods to reproduce the expected scaling of convective flow speed with the heating rate. The deviation method also substantially increases accuracy of maintaining stationary orbital motions in a Keplerian disk on long timescales. The Cargo-LeRoux method fares substantially worse in our tests, although its simplicity may still offer some merits in certain situations. Overall, we find the well-balanced treatment of gravity in combination with low Mach number flux functions essential to reproducing correct physical solutions to challenging stellar slow-flow problems on affordable collocated grids.
Using a perturbative approach we solve stellar structure equations for low-density (solar-type) stars whose interior is described with a polytropic equation of state in scenarios involving a subset of modified gravity theories. Rather than focusing o
Convection is an important physical process in astrophysics well-studied using numerical simulations under the Boussinesq and/or anelastic approximations. However these approaches reach their limits when compressible effects are important in the high
Resonant lines are powerful probes of the interstellar and circumgalactic medium of galaxies. Their transfer in gas being a complex process, the interpretation of their observational signatures, either in absorption or in emission, is often not strai
Many problems in stellar astrophysics feature flows at low Mach numbers. Conventional compressible hydrodynamics schemes frequently used in the field have been developed for the transonic regime and exhibit excessive numerical dissipation for these f
Numerical aspects of dynamos in periodic domains are discussed. Modifications of the solutions by numerically motivated alterations of the equations are being reviewed using the examples of magnetic hyperdiffusion and artificial diffusion when advanc