ترغب بنشر مسار تعليمي؟ اضغط هنا

A high performance and portable all-Mach regime flow solver code with well-balanced gravity. Application to compressible convection

103   0   0.0 ( 0 )
 نشر من قبل Thomas Padioleau
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Convection is an important physical process in astrophysics well-studied using numerical simulations under the Boussinesq and/or anelastic approximations. However these approaches reach their limits when compressible effects are important in the high Mach flow regime, e.g. in stellar atmospheres or in the presence of accretion shocks. In order to tackle these issues, we propose a new high performance and portable code, called ARK with a numerical solver well-suited for the stratified compressible Navier-Stokes equations. We take a finite volume approach with machine precision conservation of mass, transverse momentum and total energy. Based on previous works in applied mathematics we propose the use of a low Mach correction to achieve a good precision in both low and high Mach regimes. The gravity source term is discretized using a well-balanced scheme in order to reach machine precision hydrostatic balance. This new solver is implemented using the Kokkos library in order to achieve high performance computing and portability across different architectures (e.g. multi-core, many-core, and GP-GPU). We show that the low-Mach correction allows to reach the low-Mach regime with a much better accuracy than a standard Godunov-type approach. The combined well-balanced property and the low-Mach correction allowed us to trigger Rayleigh-Benard convective modes close to the critical Rayleigh number. Furthermore we present 3D turbulent Rayleigh-Benard convection with low diffusion using the low-Mach correction leading to a higher kinetic energy power spectrum. These results are very promising for future studies of high Mach and highly stratified convective problems in astrophysics.

قيم البحث

اقرأ أيضاً

MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock-bubble interaction, and gas bubble cavitation. We pre sent the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock-bubble, shock-droplet, and shock-water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas-liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock-bubble-vessel-wall and acoustic-bubble-net interactions are used to demonstrate the full capabilities of MFC.
Accurate simulations of flows in stellar interiors are crucial to improving our understanding of stellar structure and evolution. Because the typically slow flows are merely tiny perturbations on top of a close balance between gravity and the pressur e gradient, such simulations place heavy demands on numerical hydrodynamics schemes. We demonstrate how discretization errors on grids of reasonable size can lead to spurious flows orders of magnitude faster than the physical flow. Well-balanced numerical schemes can deal with this problem. Three such schemes were applied in the implicit, finite-volume Seven-League Hydro (SLH) code in combination with a low-Mach-number numerical flux function. We compare how the schemes perform in four numerical experiments addressing some of the challenges imposed by typical problems in stellar hydrodynamics. We find that the $alpha$-$beta$ and deviation well-balancing methods can accurately maintain hydrostatic solutions provided that gravitational potential energy is included in the total energy balance. They accurately conserve minuscule entropy fluctuations advected in an isentropic stratification, which enables the methods to reproduce the expected scaling of convective flow speed with the heating rate. The deviation method also substantially increases accuracy of maintaining stationary orbital motions in a Keplerian disk on long timescales. The Cargo-LeRoux method fares substantially worse in our tests, although its simplicity may still offer some merits in certain situations. Overall, we find the well-balanced treatment of gravity in combination with low Mach number flux functions essential to reproducing correct physical solutions to challenging stellar slow-flow problems on affordable collocated grids.
A new Riemann solver is presented for the ideal magnetohydrodynamics (MHD) equations with the so-called Boris correction. The Boris correction is applied to reduce wave speeds, avoiding an extremely small timestep in MHD simulations. The proposed Rie mann solver, Boris-HLLD, is based on the HLLD solver. As done by the original HLLD solver, (1) the Boris-HLLD solver has four intermediate states in the Riemann fan when left and right states are given, (2) it resolves the contact discontinuity, Alfven waves, and fast waves, and (3) it satisfies all the jump conditions across shock waves and discontinuities except for slow shock waves. The results of a shock tube problem indicate that the scheme with the Boris-HLLD solver captures contact discontinuities sharply and it exhibits shock waves without any overshoot when using the minmod limiter. The stability tests show that the scheme is stable when $|u| lesssim 0.5c$ for a low Alfven speed ($V_A lesssim c$), where $u$, $c$, and $V_A$ denote the gas velocity, speed of light, and Alfven speed, respectively. For a high Alfven speed ($V_A gtrsim c$), where the plasma beta is relatively low in many cases, the stable region is large, $|u| lesssim (0.6-1) c$. We discuss the effect of the Boris correction on physical quantities using several test problems. The Boris-HLLD scheme can be useful for problems with supersonic flows in which regions with a very low plasma beta appear in the computational domain.
We introduce a continuous-time analog solver for MaxSAT, a quintessential class of NP-hard discrete optimization problems, where the task is to find a truth assignment for a set of Boolean variables satisfying the maximum number of given logical cons traints. We show that the scaling of an invariant of the solvers dynamics, the escape rate, as function of the number of unsatisfied clauses can predict the global optimum value, often well before reaching the corresponding state. We demonstrate the performance of the solver on hard MaxSAT competition problems. We then consider the two-color Ramsey number $R(m,m)$ problem, translate it to SAT, and apply our algorithm to the still unknown $R(5,5)$. We find edge colorings without monochromatic 5-cliques for complete graphs up to 42 vertices, while on 43 vertices we find colorings with only two monochromatic 5-cliques, the best coloring found so far, supporting the conjecture that $R(5,5) = 43$.
Electroconvective flow between two infinitely long parallel electrodes is investigated via a multiphysics computational model. The model solves for spatiotemporal flow properties using two-relaxation-time Lattice Boltzmann Method for fluid and charge transport coupled to Fast Fourier Transport Poisson solver for the electric potential. The segregated model agrees with the previous analytical and numerical results providing a robust approach for modeling electrohydrodynamic flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا