ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Stochastic Volatility Model

79   0   0.0 ( 0 )
 نشر من قبل Xiuqin Xu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Volatility for financial assets returns can be used to gauge the risk for financial market. We propose a deep stochastic volatility model (DSVM) based on the framework of deep latent variable models. It uses flexible deep learning models to automatically detect the dependence of the future volatility on past returns, past volatilities and the stochastic noise, and thus provides a flexible volatility model without the need to manually select features. We develop a scalable inference and learning algorithm based on variational inference. In real data analysis, the DSVM outperforms several popular alternative volatility models. In addition, the predicted volatility of the DSVM provides a more reliable risk measure that can better reflex the risk in the financial market, reaching more quickly to a higher level when the market becomes more risky and to a lower level when the market is more stable, compared with the commonly used GARCH type model with a huge data set on the U.S. stock market.



قيم البحث

اقرأ أيضاً

The most common stochastic volatility models such as the Ornstein-Uhlenbeck (OU), the Heston, the exponential OU (ExpOU) and Hull-White models define volatility as a Markovian process. In this work we check of the applicability of the Markovian appro ximation at separate times scales and will try to answer the question which of the stochastic volatility models indicated above is the most realistic. To this end we consider the volatility at both short (a few days) and long (a few months)time scales as a Markovian process and estimate for it the coefficients of the Kramers-Moyal expansion using the data for Dow-Jones Index. It has been found that the empirical data allow to take only the first two coefficients of expansion to be non zero that define form of the volatility stochastic differential equation of Ito. It proved to be that for the long time scale the empirical data support the ExpOU model. At the short time scale the empirical model coincides with ExpOU model for the small volatility quantities only.
230 - Ben Boukai 2021
We consider Hestons (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Hestons solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Hestons SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-paramet
This paper presents how to apply the stochastic collocation technique to assets that can not move below a boundary. It shows that the polynomial collocation towards a lognormal distribution does not work well. Then, the potentials issues of the relat ed collocated local volatility model (CLV) are explored. Finally, a simple analytical expression for the Dupire local volatility derived from the option prices modelled by stochastic collocation is given.
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of s tock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the S&P 500, FTSE100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.
We analyse high-frequency realised volatility dynamics and spillovers in the bitcoin market, focusing on two pairs: bitcoin against the US dollar (the main fiat-crypto pair) and trading bitcoin against tether (the main crypto-crypto pair). We find th at the tether-margined perpetual contract on Binance is clearly the main source of volatility, continuously transmitting strong flows to all other instruments and receiving only a little volatility. Moreover, we find that (i) during US trading hours, traders pay more attention and are more reactive to prevailing market conditions when updating their expectations and (ii) the crypto market exhibits a higher interconnectedness when traditional Western stock markets are open. Our results highlight that regulators should not only consider spot exchanges offering bitcoin-fiat trading but also the tether-margined derivatives products available on most unregulated exchanges, most importantly Binance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا