ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Binance in Bitcoin Volatility Transmission

138   0   0.0 ( 0 )
 نشر من قبل Carol Alexander Prof.
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse high-frequency realised volatility dynamics and spillovers in the bitcoin market, focusing on two pairs: bitcoin against the US dollar (the main fiat-crypto pair) and trading bitcoin against tether (the main crypto-crypto pair). We find that the tether-margined perpetual contract on Binance is clearly the main source of volatility, continuously transmitting strong flows to all other instruments and receiving only a little volatility. Moreover, we find that (i) during US trading hours, traders pay more attention and are more reactive to prevailing market conditions when updating their expectations and (ii) the crypto market exhibits a higher interconnectedness when traditional Western stock markets are open. Our results highlight that regulators should not only consider spot exchanges offering bitcoin-fiat trading but also the tether-margined derivatives products available on most unregulated exchanges, most importantly Binance.



قيم البحث

اقرأ أيضاً

65 - Reginald D. Smith 2017
Attempts to accurately measure the monetary velocity or related properties of bitcoin used in transactions have often attempted to either directly apply definitions from traditional macroeconomic theory or to use specialized metrics relative to the p roperties of the Blockchain like bitcoin days destroyed. In this paper, it is demonstrated that beyond being a useful metric, bitcoin days destroyed has mathematical properties that allow you to calculate the average dormancy (time since last use in a transaction) of the bitcoins used in transactions over a given time period. In addition, bitcoin days destroyed is shown to have another unexpected significance as the average size of the pool of traded bitcoins by virtue of the expression Littles Law, though only under limited conditions.
We show that the statistics of spreads in real order books is characterized by an intrinsic asymmetry due to discreteness effects for even or odd values of the spread. An analysis of data from the NYSE order book points out that traders strategies co ntribute to this asymmetry. We also investigate this phenomenon in the framework of a microscopic model and, by introducing a non-uniform deposition mechanism for limit orders, we are able to quantitatively reproduce the asymmetry found in the experimental data. Simulations of our model also show a realistic dynamics with a sort of intermittent behavior characterized by long periods in which the order book is compact and liquid interrupted by volatile configurations. The order placement strategies produce a non-trivial behavior of the spread relaxation dynamics which is similar to the one observed in real markets.
In light of micro-scale inefficiencies induced by the high degree of fragmentation of the Bitcoin trading landscape, we utilize a granular data set comprised of orderbook and trades data from the most liquid Bitcoin markets, in order to understand th e price formation process at sub-1 second time scales. To achieve this goal, we construct a set of features that encapsulate relevant microstructural information over short lookback windows. These features are subsequently leveraged first to generate a leader-lagger network that quantifies how markets impact one another, and then to train linear models capable of explaining between 10% and 37% of total variation in $500$ms future returns (depending on which market is the prediction target). The results are then compared with those of various PnL calculations that take trading realities, such as transaction costs, into account. The PnL calculations are based on natural $textit{taker}$ strategies (meaning they employ market orders) that we associate to each model. Our findings emphasize the role of a markets fee regime in determining its propensity to being a leader or a lagger, as well as the profitability of our taker strategy. Taking our analysis further, we also derive a natural $textit{maker}$ strategy (i.e., one that uses only passive limit orders), which, due to the difficulties associated with backtesting maker strategies, we test in a real-world live trading experiment, in which we turned over 1.5 million USD in notional volume. Lending additional confidence to our models, and by extension to the features they are based on, the results indicate a significant improvement over a naive benchmark strategy, which we also deploy in a live trading environment with real capital, for the sake of comparison.
226 - Shan Wang 2015
Technical trading rules have a long history of being used by practitioners in financial markets. Their profitable ability and efficiency of technical trading rules are yet controversial. In this paper, we test the performance of more than seven thous ands traditional technical trading rules on the Shanghai Securities Composite Index (SSCI) from May 21, 1992 through June 30, 2013 and Shanghai Shenzhen 300 Index (SHSZ 300) from April 8, 2005 through June 30, 2013 to check whether an effective trading strategy could be found by using the performance measurements based on the return and Sharpe ratio. To correct for the influence of the data-snooping effect, we adopt the Superior Predictive Ability test to evaluate if there exists a trading rule that can significantly outperform the benchmark. The result shows that for SSCI, technical trading rules offer significant profitability, while for SHSZ 300, this ability is lost. We further partition the SSCI into two sub-series and find that the efficiency of technical trading in sub-series, which have exactly the same spanning period as that of SHSZ 300, is severely weakened. By testing the trading rules on both indexes with a five-year moving window, we find that the financial bubble from 2005 to 2007 greatly improve the effectiveness of technical trading rules. This is consistent with the predictive ability of technical trading rules which appears when the market is less efficient.
224 - Ioane Muni Toke 2013
We study the analytical properties of a one-side order book model in which the flows of limit and market orders are Poisson processes and the distribution of lifetimes of cancelled orders is exponential. Although simplistic, the model provides an ana lytical tractability that should not be overlooked. Using basic results for birth-and-death processes, we build an analytical formula for the shape (depth) of a continuous order book model which is both founded by market mechanisms and very close to empirically tested formulas. We relate this shape to the probability of execution of a limit order, highlighting a law of conservation of the flows of orders in an order book. We then extend our model by allowing random sizes of limit orders, hereby allowing to study the relationship between the size of the incoming limit orders and the shape of the order book. Our theoretical model shows that, for a given total volume of incoming limit orders, the less limit orders are submitted (i.e. the larger the average size of these limit orders), the deeper is the order book around the spread. This theoretical relationship is finally empirically tested on several stocks traded on the Paris stock exchange.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا