ﻻ يوجد ملخص باللغة العربية
Federated edge learning (FEEL) is a widely adopted framework for training an artificial intelligence (AI) model distributively at edge devices to leverage their data while preserving their data privacy. The execution of a power-hungry learning task at energy-constrained devices is a key challenge confronting the implementation of FEEL. To tackle the challenge, we propose the solution of powering devices using wireless power transfer (WPT). To derive guidelines on deploying the resultant wirelessly powered FEEL (WP-FEEL) system, this work aims at the derivation of the tradeoff between the model convergence and the settings of power sources in two scenarios: 1) the transmission power and density of power-beacons (dedicated charging stations) if they are deployed, or otherwise 2) the transmission power of a server (access-point). The development of the proposed analytical framework relates the accuracy of distributed stochastic gradient estimation to the WPT settings, the randomness in both communication and WPT links, and devices computation capacities. Furthermore, the local-computation at devices (i.e., mini-batch size and processor clock frequency) is optimized to efficiently use the harvested energy for gradient estimation. The resultant learning-WPT tradeoffs reveal the simple scaling laws of the model-convergence rate with respect to the transferred energy as well as the devices computational energy efficiencies. The results provide useful guidelines on WPT provisioning to provide a guaranteer on learning performance. They are corroborated by experimental results using a real dataset.
Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks as it supports collaborative model training at a massive number of mobile devices. However, model communication over wir
We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices pe
Federated learning (FL) has recently emerged as a promising technology to enable artificial intelligence (AI) at the network edge, where distributed mobile devices collaboratively train a shared AI model under the coordination of an edge server. To s
In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows one-shot over-the-air aggregation of gradient/model-updates by exploiting the wa