ﻻ يوجد ملخص باللغة العربية
In this paper, we study wave transmission in a rotating fluid with multiple alternating convectively stable and unstable layers. We have discussed wave transmissions in two different circumstances: cases where the wave is propagative in each layer and cases where wave tunneling occurs. We find that efficient wave transmission can be achieved by `resonant propagation or `resonant tunneling, even when stable layers are strongly stratified, and we call this phenomenon `enhanced wave transmission. Enhanced wave transmission only occurs when the total number of layers is odd (embedding stable layers are alternatingly embedded within clamping convective layers, or vise versa). For wave propagation, the occurrence of enhanced wave transmission requires that clamping layers have similar properties, the thickness of each clamping layer is close to a multiple of the half wavelength of the corresponding propagative wave, and the total thickness of embedded layers is close to a multiple of the half wavelength of the corresponding propagating wave (resonant propagation). For wave tunneling, we have considered two cases: tunneling of gravity waves and tunneling of inertial waves. In both cases, efficient tunneling requires that clamping layers have similar properties, the thickness of each embedded layer is much smaller than the corresponding e-folding decay distance, and the thickness of each clamping layer is close to a multiple-and-a-half of half wavelength (resonant tunneling).
In this paper, we study the inertial and gravity wave transmissions near the radiative-convective boundaries in the {it f}-plane. Two configurations have been considered: waves propagate from the convective layer to the radiative stratified stable la
Stellar radiative zones are typically assumed to be motionless in standard models of stellar structure but there is sound theoretical and observational evidence that this cannot be the case. We investigate by direct numerical simulations a three-dime
We study the convective and absolute forms of azimuthal magnetorotational instability (AMRI) in a Taylor-Couette (TC) flow with an imposed azimuthal magnetic field. We show that the domain of the convective AMRI is wider than that of the absolute AMR
We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh-Benard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number Ha, we find an enhancement of heat transport. Fu
We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) ten