ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasistatic magnetoconvection: Heat transport enhancement and boundary layer crossing

152   0   0.0 ( 0 )
 نشر من قبل Kai Leong Chong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh-Benard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number Ha, we find an enhancement of heat transport. Furthermore, a maximum heat transport enhancement is observed at certain optimal $Ha_{opt}$. The enhanced heat transport may be understood as a result of the increased coherency of the thermal plumes, which are elementary heat carriers of the system. To our knowledge this is the first time that a heat transfer enhancement by the stabilising Lorentz force in quasistatic magnetoconvection has been observed. We further found that the optimal enhancement may be understood in terms of the crossing between the thermal and the momentum boundary layers (BL) and the fact that temperature fluctuations are maximum near the position where the BLs cross. These findings demonstrate that the heat transport enhancement phenomenon in the quasistatic magnetoconvection system belongs to the same universality class of stabilising$-$destabilising ($S$-$D$) turbulent flows as the systems of confined Rayleigh-Benard (CRB), rotating Rayleigh-Benard (RRB) and double-diffusive convection (DDC). This is further supported by the findings that the heat transport, boundary layer ratio and the temperature fluctuations in magnetoconvection at the boundary layer crossing point are similar to the other three cases.

قيم البحث

اقرأ أيضاً

Understanding the generation mechanism of the heating flux is essential for the design of hypersonic vehicles. We proposed a novel formula to decompose the heat flux coefficient into the contributions of different terms by integrating the conservativ e equation of the total energy. The reliability of the formula is well demonstrated by the direct numerical simulation results of a hypersonic transitional boundary layer. Through this formula, the exact process of the energy transport in the boundary layer can be explained and the dominant contributors to the heat flux can be explored, which are beneficial for the prediction of the heat and design of the thermal protection devices
126 - Tao Cai , Cong Yu , Xing Wei 2021
In this paper, we study wave transmission in a rotating fluid with multiple alternating convectively stable and unstable layers. We have discussed wave transmissions in two different circumstances: cases where the wave is propagative in each layer an d cases where wave tunneling occurs. We find that efficient wave transmission can be achieved by `resonant propagation or `resonant tunneling, even when stable layers are strongly stratified, and we call this phenomenon `enhanced wave transmission. Enhanced wave transmission only occurs when the total number of layers is odd (embedding stable layers are alternatingly embedded within clamping convective layers, or vise versa). For wave propagation, the occurrence of enhanced wave transmission requires that clamping layers have similar properties, the thickness of each clamping layer is close to a multiple of the half wavelength of the corresponding propagative wave, and the total thickness of embedded layers is close to a multiple of the half wavelength of the corresponding propagating wave (resonant propagation). For wave tunneling, we have considered two cases: tunneling of gravity waves and tunneling of inertial waves. In both cases, efficient tunneling requires that clamping layers have similar properties, the thickness of each embedded layer is much smaller than the corresponding e-folding decay distance, and the thickness of each clamping layer is close to a multiple-and-a-half of half wavelength (resonant tunneling).
We study, using direct numerical simulations, the effect of geometrical confinement on heat transport and flow structure in Rayleigh-Benard convection in fluids with different Prandtl numbers. Our simulations span over two decades of Prandtl number $ Pr$, $0.1 leq Pr leq 40$, with the Rayleigh number $Ra$ fixed at $10^8$. The width-to-height aspect ratio $Gamma$ spans between $0.025$ and $0.25$ while the length-to-height aspect ratio is fixed at one. We first find that for $Pr geq 0.5$, geometrical confinement can lead to a significant enhancement in heat transport as characterized by the Nusselt number $Nu$. For those cases, $Nu$ is maximal at a certain $Gamma = Gamma_{opt}$. It is found that $Gamma_{opt}$ exhibits a power-law relation with $Pr$ as $Gamma_{opt}=0.11Pr^{-0.06}$, and the maximal relative enhancement generally increases with $Pr$ over the explored parameter range. As opposed to the situation of $Pr geq 0.5$, confinement-induced enhancement in $Nu$ is not realized for smaller values of $Pr$, such as $0.1$ and $0.2$. The $Pr$ dependence of the heat transport enhancement can be understood in its relation to the coverage area of the thermal plumes over the thermal boundary layer (BL) where larger coverage is observed for larger $Pr$ due to a smaller thermal diffusivity. We further show that $Gamma_{opt}$ is closely related to the crossing of thermal and momentum BLs, and find that $Nu$ declines sharply when the thickness ratio of the thermal and momentum BLs exceeds a certain value of about one. In addition, through examining the temporally averaged flow fields and 2D mode decomposition, it is found that for smaller $Pr$ the large-scale circulation is robust against the geometrical confinement of the convection cell.
We present laboratory measurements of the interaction between thermoelectric currents and turbulent magnetoconvection. In a cylindrical volume of liquid gallium heated from below and cooled from above and subject to a vertical magnetic field, it is f ound that the large scale circulation (LSC) can undergo a slow axial precession. Our experiments demonstrate that this LSC precession occurs only when electrically conducting boundary conditions are employed, and that the precession direction reverses when the axial magnetic field direction is flipped. A novel thermoelectric magnetoconvection (TEMC) model is developed that successfully predicts the zeroth-order magnetoprecession dynamics. Our TEMC magnetoprecession model hinges on thermoelectric current loops at the top and bottom boundaries, which create Lorentz forces that generate horizontal torques on the overturning large-scale circulatory flow. The thermoelectric torques in our model act to drive a precessional motion of the LSC. This model yields precession frequencies predictions that are in good agreement with the experimental observations. We postulate that thermoelectric effects in convective flows, long argued to be relevant in liquid metal heat transfer and mixing processes, may also have applications in planetary interior magnetohydrodynamics.
The present numerical investigation uses well-resolved large-eddy simulations to study the low-frequency unsteady motions observed in shock-wave/turbulent-boundary-layer interactions. Details about the numerical aspects of the simulations and the sub sequent data analysis can be found in three papers by the authors (Theo. Comput. Fluid Dyn., 23:79--107 (2009); Shock Waves, 19(6):469--478 (2009) and J. of Fluid Mech. (2011)). The fluid dynamics video illustrates the complexity of the interaction between a Mach 2.3 supersonic turbulent boundary layer and an oblique shock wave generated by a 8-degree wedge angle. The first part of the video highlights the propagation of disturbances along the reflected shock due to the direct perturbation of the shock foot by turbulence structures from the upstream boundary layer. The second part of the video describes the observed block-like back-and-forth motions of the reflected shock, focusing on timescales about two orders of magnitude longer than the ones shown in the first part of video. This gives a visual impression of the broadband and energetically-significant peak in the wall-pressure spectrum at low frequencies. The background blue-white colouring represents the temperature field (with white corresponding to hot) and one can clearly appreciate why such low-frequency shock motions can lead to reduced fatigue lifetimes and is detrimental to aeronautical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا