ﻻ يوجد ملخص باللغة العربية
In recent years, graph neural networks (GNNs) have gained increasing attention, as they possess the excellent capability of processing graph-related problems. In practice, hyperparameter optimisation (HPO) is critical for GNNs to achieve satisfactory results, but this process is costly because the evaluations of different hyperparameter settings require excessively training many GNNs. Many approaches have been proposed for HPO, which aims to identify promising hyperparameters efficiently. In particular, the genetic algorithm (GA) for HPO has been explored, which treats GNNs as a black-box model, of which only the outputs can be observed given a set of hyperparameters. However, because GNN models are sophisticated and the evaluations of hyperparameters on GNNs are expensive, GA requires advanced techniques to balance the exploration and exploitation of the search and make the optimisation more effective given limited computational resources. Therefore, we proposed a tree-structured mutation strategy for GA to alleviate this issue. Meanwhile, we reviewed the recent HPO works, which gives room for the idea of tree-structure to develop, and we hope our approach can further improve these HPO methods in the future.
Graph representation of structured data can facilitate the extraction of stereoscopic features, and it has demonstrated excellent ability when working with deep learning systems, the so-called Graph Neural Networks (GNNs). Choosing a promising archit
Hyperparameter optimisation is a crucial process in searching the optimal machine learning model. The efficiency of finding the optimal hyperparameter settings has been a big concern in recent researches since the optimisation process could be time-c
Graph neural networks (GNNs) have been proposed for a wide range of graph-related learning tasks. In particular, in recent years, an increasing number of GNN systems were applied to predict molecular properties. However, a direct impediment is to sel
Graph neural networks (GNNs) have been successfully applied in many structured data domains, with applications ranging from molecular property prediction to the analysis of social networks. Motivated by the broad applicability of GNNs, we propose the
Driven by the outstanding performance of neural networks in the structured Euclidean domain, recent years have seen a surge of interest in developing neural networks for graphs and data supported on graphs. The graph is leveraged at each layer of the