ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Genetic Algorithm with Hierarchical Evaluation Strategy for Hyperparameter Optimisation of Graph Neural Networks

73   0   0.0 ( 0 )
 نشر من قبل Yingfang Yuan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph representation of structured data can facilitate the extraction of stereoscopic features, and it has demonstrated excellent ability when working with deep learning systems, the so-called Graph Neural Networks (GNNs). Choosing a promising architecture for constructing GNNs can be transferred to a hyperparameter optimisation problem, a very challenging task due to the size of the underlying search space and high computational cost for evaluating candidate GNNs. To address this issue, this research presents a novel genetic algorithm with a hierarchical evaluation strategy (HESGA), which combines the full evaluation of GNNs with a fast evaluation approach. By using full evaluation, a GNN is represented by a set of hyperparameter values and trained on a specified dataset, and root mean square error (RMSE) will be used to measure the quality of the GNN represented by the set of hyperparameter values (for regression problems). While in the proposed fast evaluation process, the training will be interrupted at an early stage, the difference of RMSE values between the starting and interrupted epochs will be used as a fast score, which implies the potential of the GNN being considered. To coordinate both types of evaluations, the proposed hierarchical strategy uses the fast evaluation in a lower level for recommending candidates to a higher level, where the full evaluation will act as a final assessor to maintain a group of elite individuals. To validate the effectiveness of HESGA, we apply it to optimise two types of deep graph neural networks. The experimental results on three benchmark datasets demonstrate its advantages compared to Bayesian hyperparameter optimization.

قيم البحث

اقرأ أيضاً

In recent years, graph neural networks (GNNs) have gained increasing attention, as they possess the excellent capability of processing graph-related problems. In practice, hyperparameter optimisation (HPO) is critical for GNNs to achieve satisfactory results, but this process is costly because the evaluations of different hyperparameter settings require excessively training many GNNs. Many approaches have been proposed for HPO, which aims to identify promising hyperparameters efficiently. In particular, the genetic algorithm (GA) for HPO has been explored, which treats GNNs as a black-box model, of which only the outputs can be observed given a set of hyperparameters. However, because GNN models are sophisticated and the evaluations of hyperparameters on GNNs are expensive, GA requires advanced techniques to balance the exploration and exploitation of the search and make the optimisation more effective given limited computational resources. Therefore, we proposed a tree-structured mutation strategy for GA to alleviate this issue. Meanwhile, we reviewed the recent HPO works, which gives room for the idea of tree-structure to develop, and we hope our approach can further improve these HPO methods in the future.
Hyperparameter optimisation is a crucial process in searching the optimal machine learning model. The efficiency of finding the optimal hyperparameter settings has been a big concern in recent researches since the optimisation process could be time-c onsuming, especially when the objective functions are highly expensive to evaluate. In this paper, we introduce an intelligent evolutionary optimisation algorithm which applies machine learning technique to the traditional evolutionary algorithm to accelerate the overall optimisation process of tuning machine learning models in classification problems. We demonstrate our Intelligent Evolutionary Optimisation (IEO)in a series of controlled experiments, comparing with traditional evolutionary optimisation in hyperparameter tuning. The empirical study shows that our approach accelerates the optimisation speed by 30.40% on average and up to 77.06% in the best scenarios.
Graph neural networks (GNNs) have been proposed for a wide range of graph-related learning tasks. In particular, in recent years, an increasing number of GNN systems were applied to predict molecular properties. However, a direct impediment is to sel ect appropriate hyperparameters to achieve satisfactory performance with lower computational cost. Meanwhile, many molecular datasets are far smaller than many other datasets in typical deep learning applications. Most hyperparameter optimization (HPO) methods have not been explored in terms of their efficiencies on such small datasets in the molecular domain. In this paper, we conducted a theoretical analysis of common and specific features for two state-of-the-art and popular algorithms for HPO: TPE and CMA-ES, and we compared them with random search (RS), which is used as a baseline. Experimental studies are carried out on several benchmarks in MoleculeNet, from different perspectives to investigate the impact of RS, TPE, and CMA-ES on HPO of GNNs for molecular property prediction. In our experiments, we concluded that RS, TPE, and CMA-ES have their individual advantages in tackling different specific molecular problems. Finally, we believe our work will motivate further research on GNN as applied to molecular machine learning problems in chemistry and materials sciences.
Driven by the outstanding performance of neural networks in the structured Euclidean domain, recent years have seen a surge of interest in developing neural networks for graphs and data supported on graphs. The graph is leveraged at each layer of the neural network as a parameterization to capture detail at the node level with a reduced number of parameters and computational complexity. Following this rationale, this paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet. An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors. By extrapolating this strategy to more iterations between neighboring nodes, the EdgeNet learns edge- and neighbor-dependent weights to capture local detail. This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs). In writing different GNN architectures with a common language, EdgeNets highlight specific architecture advantages and limitations, while providing guidelines to improve their capacity without compromising their local implementation. An interesting conclusion is the unification of GCNNs and GATs -- approaches that have been so far perceived as separate. In particular, we show that GATs are GCNNs on a graph that is learned from the features. This particularization opens the doors to develop alternative attention mechanisms for improving discriminatory power.
Deep Graph Neural Networks (GNNs) show promising performance on a range of graph tasks, yet at present are costly to run and lack many of the optimisations applied to DNNs. We show, for the first time, how to systematically quantise GNNs with minimal or no loss in performance using Network Architecture Search (NAS). We define the possible quantisation search space of GNNs. The proposed novel NAS mechanism, named Low Precision Graph NAS (LPGNAS), constrains both architecture and quantisation choices to be differentiable. LPGNAS learns the optimal architecture coupled with the best quantisation strategy for different components in the GNN automatically using back-propagation in a single search round. On eight different datasets, solving the task of classifying unseen nodes in a graph, LPGNAS generates quantised models with significant reductions in both model and buffer sizes but with similar accuracy to manually designed networks and other NAS results. In particular, on the Pubmed dataset, LPGNAS shows a better size-accuracy Pareto frontier compared to seven other manual and searched baselines, offering a 2.3 times reduction in model size but a 0.4% increase in accuracy when compared to the best NAS competitor. Finally, from our collected quantisation statistics on a wide range of datasets, we suggest a W4A8 (4-bit weights, 8-bit activations) quantisation strategy might be the bottleneck for naive GNN quantisations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا