ﻻ يوجد ملخص باللغة العربية
In the paper, a comparison is described of the microwave power standard based on thermoelectric sensors against an analogous standard based on bolometric sensors. Measurements have been carried out with the classical twin-type microcalorimeter, fitted with N-connector test ports suitable for the frequency band 0.05 - 18 GHz. An appropriate measurand definition is given for being suitable to both standard types. A system accuracy assessment is performed applying the Gaussian error propagation through the mathematical models that interpret the microcalorimeter response in each case. The results highlight advantages and weaknesses of each power standard type.
The phase noise and frequency stability measurements of 1 GHz, 100 MHz, and 10 MHz signals are presented which have been synthesized from microwave cryogenic sapphire oscillators using ultra-low-vibration pulse-tube cryocooler technology. We present
In order to demonstrate the usefulness of the only one existing method for systematic error estimations in VNA (Vector Network Analyzer) measurements by using complex DERs (Differential Error Regions), we compare one-port VNA measurements after the t
This paper presents a detailed investigation of superconducting nanowire single-photon detectors (SNSPDs) biased with microwave and direct currents. We developed a hybrid detector, which allows the operation in the rf and dc operation mode. With this
An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transf
Thermoelectric power sensors can now be used as transfer standards, instead of bolometers, in the microcalorimeter technique. This alternative has the technical advantages to be less sensitive to absolute temperature and not downward frequency limite