ﻻ يوجد ملخص باللغة العربية
Iso-edge domains are a variant of the iso-Delaunay decomposition introduced by Voronoi. They were introduced by Baranovskii & Ryshkov in order to solve the covering problem in dimension $5$. In this work we revisit this decomposition and prove the following new results: $bullet$ We review the existing theory and give a general mass-formula for the iso-edge domains. $bullet$ We prove that the associated toroidal compactification of the moduli space of principally polarized abelian varieties is projective. $bullet$ We prove the Conway--Sloane conjecture in dimension $5$. $bullet$ We prove that the quadratic forms for which the conorms are non-negative are exactly the matroidal ones in dimension $5$.
The Mobius metric $delta_G$ is studied in the cases where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these res
We consider an optimal stretching problem for strictly convex domains in $mathbb{R}^d$ that are symmetric with respect to each coordinate hyperplane, where stretching refers to transformation by a diagonal matrix of determinant $1$. Specifically, we
Suppose that $E$ and $E$ denote real Banach spaces with dimension at least 2, that $Dsubset E$ and $Dsubset E$ are domains, and that $f: Dto D$ is a homeomorphism. In this paper, we prove the following subinvariance property for the class of uniform
We prove in the setting of $Q$--Ahlfors regular PI--spaces the following result: if a domain has uniformly large boundary when measured with respect to the $s$--dimensional Hausdorff content, then its visible boundary has large $t$--dimensional Hausd
Monskys celebrated equidissection theorem follows from his more general proof of the existence of a polynomial relation $f$ among the areas of the triangles in a dissection of the unit square. More recently, the authors studied a different polynomial