ترغب بنشر مسار تعليمي؟ اضغط هنا

On the subinvariance of uniform domains in Banach spaces

183   0   0.0 ( 0 )
 نشر من قبل Matti Vuorinen
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Suppose that $E$ and $E$ denote real Banach spaces with dimension at least 2, that $Dsubset E$ and $Dsubset E$ are domains, and that $f: Dto D$ is a homeomorphism. In this paper, we prove the following subinvariance property for the class of uniform domains: Suppose that $f$ is a freely quasiconformal mapping and that $D$ is uniform. Then the image $f(D_1)$ of every uniform subdomain $D_1$ in $D$ under $f$ is still uniform. This result answers an open problem of Vaisala in the affirmative.



قيم البحث

اقرأ أيضاً

181 - M. Huang , M. Vuorinen , X. Wang 2012
Suppose that $E$ denotes a real Banach space with the dimension at least 2. The main aim of this paper is to show that a domain $D$ in $E$ is a $psi$-uniform domain if and only if $Dbackslash P$ is a $psi_1$-uniform domain, and $D$ is a uniform domai n if and only if $Dbackslash P$ also is a uniform domain, whenever $P$ is a closed countable subset of $D$ satisfying a quasihyperbolic separation condition. This condition requires that the quasihyperbolic distance (w.r.t. $D$) between each pair of distinct points in $P$ has a lower bound greater than or equal to $frac{1}{2}$.
184 - Y. Li , M. Vuorinen , X. Wang 2013
We study the stability of John domains in Banach spaces under removal of a countable set of points. In particular, we prove that the class of John domains is stable in the sense that removing a certain type of closed countable set from the domain yie lds a new domain which also is a John domain. We apply this result to prove the stability of the inner uniform domains. Finally, we consider a wider class of domains, so called $psi$-John domains and prove a similar result for this class.
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X $ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new ch aracterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direction of tangent vectors to suitable rectifiable curves.
101 - Ryan Gibara , Riikka Korte 2021
We prove in the setting of $Q$--Ahlfors regular PI--spaces the following result: if a domain has uniformly large boundary when measured with respect to the $s$--dimensional Hausdorff content, then its visible boundary has large $t$--dimensional Hausd orff content for every $0<t<sleq Q-1$. The visible boundary is the set of points that can be reached by a John curve from a fixed point $z_{0}in Omega$. This generalizes recent results by Koskela-Nandi-Nicolau (from $mathbb{R}^2$) and Azzam ($mathbb{R}^n$). In particular, our approach shows that the phenomenon is independent of the linear structure of the space.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا