ﻻ يوجد ملخص باللغة العربية
This paper investigates how to accelerate the convergence of distributed optimization algorithms on nonconvex problems with zeroth-order information available only. We propose a zeroth-order (ZO) distributed primal-dual stochastic coordinates algorithm equipped with powerball method to accelerate. We prove that the proposed algorithm has a convergence rate of $mathcal{O}(sqrt{p}/sqrt{nT})$ for general nonconvex cost functions. We consider solving the generation of adversarial examples from black-box DNNs problem to compare with the existing state-of-the-art centralized and distributed ZO algorithms. The numerical results demonstrate the faster convergence rate of the proposed algorithm and match the theoretical analysis.
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning app
This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. I
As application demands for zeroth-order (gradient-free) optimization accelerate, the need for variance reduced and faster converging approaches is also intensifying. This paper addresses these challenges by presenting: a) a comprehensive theoretical
Stochastic gradient descent (SGD) is one of the most widely used optimization methods for parallel and distributed processing of large datasets. One of the key limitations of distributed SGD is the need to regularly communicate the gradients between
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new