ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Immersive Virtual Reality Simulations of Bionic Vision

102   0   0.0 ( 0 )
 نشر من قبل Justin Kasowski
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bionic vision is a rapidly advancing field aimed at developing visual neuroprostheses (bionic eyes) to restore useful vision to people who are blind. However, a major outstanding challenge is predicting what people see when they use their devices. The limited field of view of current devices necessitates head movements to scan the scene, which is difficult to simulate on a computer screen. In addition, many computational models of bionic vision lack biological realism. To address these challenges, we propose to embed biologically realistic models of simulated prosthetic vision (SPV) in immersive virtual reality (VR) so that sighted subjects can act as virtual patients in real-world tasks.

قيم البحث

اقرأ أيضاً

Effective data visualization is a key part of the discovery process in the era of big data. It is the bridge between the quantitative content of the data and human intuition, and thus an essential component of the scientific path from data into knowl edge and understanding. Visualization is also essential in the data mining process, directing the choice of the applicable algorithms, and in helping to identify and remove bad data from the analysis. However, a high complexity or a high dimensionality of modern data sets represents a critical obstacle. How do we visualize interesting structures and patterns that may exist in hyper-dimensional data spaces? A better understanding of how we can perceive and interact with multi dimensional information poses some deep questions in the field of cognition technology and human computer interaction. To this effect, we are exploring the use of immersive virtual reality platforms for scientific data visualization, both as software and inexpensive commodity hardware. These potentially powerful and innovative tools for multi dimensional data visualization can also provide an easy and natural path to a collaborative data visualization and exploration, where scientists can interact with their data and their colleagues in the same visual space. Immersion provides benefits beyond the traditional desktop visualization tools: it leads to a demonstrably better perception of a datascape geometry, more intuitive data understanding, and a better retention of the perceived relationships in the data.
110 - C.J. Fluke 2018
Spherical coordinate systems, which are ubiquitous in astronomy, cannot be shown without distortion on flat, two-dimensional surfaces. This poses challenges for the two complementary phases of visual exploration -- making discoveries in data by looki ng for relationships, patterns or anomalies -- and publication -- where the results of an exploration are made available for scientific scrutiny or communication. This is a long-standing problem, and many practical solutions have been developed. Our allskyVR approach provides a workflow for experimentation with commodity virtual reality head-mounted displays. Using the free, open source S2PLOT programming library, and the A-Frame WebVR browser-based framework, we provide a straightforward way to visualise all-sky catalogues on a user-centred, virtual celestial sphere. The allskyVR distribution contains both a quickstart option, complete with a gaze-based menu system, and a fully customisable mode for those who need more control of the immersive experience. The software is available for download from: https://github.com/cfluke/allskyVR
Software analytics in augmented reality (AR) is said to have great potential. One reason why this potential is not yet fully exploited may be usability problems of the AR user interfaces. We present an iterative and qualitative usability evaluation w ith 15 subjects of a state-of-the-art application for software analytics in AR. We could identify and resolve numerous usability issues. Most of them were caused by applying conventional user interface elements, such as dialog windows, buttons, and scrollbars. The used city visualization, however, did not cause any usability issues. Therefore, we argue that future work should focus on making conventional user interface elements in AR obsolete by integrating their functionality into the immersive visualization.
225 - Luis Valente 2016
This paper proposes the concept of live-action virtual reality games as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, contex t-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are live-action games because a player physically acts out (using his/her real body and senses) his/her avatar (his/her virtual representation) in the game stage, which is the mixed-reality environment where the game happens. The game stage is a kind of augmented virtuality; a mixed-reality where the virtual world is augmented with real-world information. In live-action virtual reality games, players wear HMD devices and see a virtual world that is constructed using the physical world architecture as the basic geometry and context information. Physical objects that reside in the physical world are also mapped to virtual elements. Live-action virtual reality games keeps the virtual and real-worlds superimposed, requiring players to physically move in the environment and to use different interaction paradigms (such as tangible and embodied interaction) to complete game activities. This setup enables the players to touch physical architectural elements (such as walls) and other objects, feeling the game stage. Players have free movement and may interact with physical objects placed in the game stage, implicitly and explicitly. Live-action virtual reality games differ from similar game concepts because they sense and use contextual information to create unpredictable game experiences, giving rise to emergent gameplay.
We present PhyShare, a new haptic user interface based on actuated robots. Virtual reality has recently been gaining wide adoption, and an effective haptic feedback in these scenarios can strongly support users sensory in bridging virtual and physica l world. Since participants do not directly observe these robotic proxies, we investigate the multiple mappings between physical robots and virtual proxies that can utilize the resources needed to provide a well rounded VR experience. PhyShare bots can act either as directly touchable objects or invisible carriers of physical objects, depending on different scenarios. They also support distributed collaboration, allowing remotely located VR collaborators to share the same physical feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا