ترغب بنشر مسار تعليمي؟ اضغط هنا

Immersive Virtual Reality Experiences for All-Sky Data

111   0   0.0 ( 0 )
 نشر من قبل Christopher Fluke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.J. Fluke




اسأل ChatGPT حول البحث

Spherical coordinate systems, which are ubiquitous in astronomy, cannot be shown without distortion on flat, two-dimensional surfaces. This poses challenges for the two complementary phases of visual exploration -- making discoveries in data by looking for relationships, patterns or anomalies -- and publication -- where the results of an exploration are made available for scientific scrutiny or communication. This is a long-standing problem, and many practical solutions have been developed. Our allskyVR approach provides a workflow for experimentation with commodity virtual reality head-mounted displays. Using the free, open source S2PLOT programming library, and the A-Frame WebVR browser-based framework, we provide a straightforward way to visualise all-sky catalogues on a user-centred, virtual celestial sphere. The allskyVR distribution contains both a quickstart option, complete with a gaze-based menu system, and a fully customisable mode for those who need more control of the immersive experience. The software is available for download from: https://github.com/cfluke/allskyVR



قيم البحث

اقرأ أيضاً

Effective data visualization is a key part of the discovery process in the era of big data. It is the bridge between the quantitative content of the data and human intuition, and thus an essential component of the scientific path from data into knowl edge and understanding. Visualization is also essential in the data mining process, directing the choice of the applicable algorithms, and in helping to identify and remove bad data from the analysis. However, a high complexity or a high dimensionality of modern data sets represents a critical obstacle. How do we visualize interesting structures and patterns that may exist in hyper-dimensional data spaces? A better understanding of how we can perceive and interact with multi dimensional information poses some deep questions in the field of cognition technology and human computer interaction. To this effect, we are exploring the use of immersive virtual reality platforms for scientific data visualization, both as software and inexpensive commodity hardware. These potentially powerful and innovative tools for multi dimensional data visualization can also provide an easy and natural path to a collaborative data visualization and exploration, where scientists can interact with their data and their colleagues in the same visual space. Immersion provides benefits beyond the traditional desktop visualization tools: it leads to a demonstrably better perception of a datascape geometry, more intuitive data understanding, and a better retention of the perceived relationships in the data.
Astrophysics lies at the crossroads of big datasets (such as the Large Synoptic Survey Telescope and Gaia), open source software to visualize and interpret high dimensional datasets (such as Glue, WorldWide Telescope, and OpenSpace), and uniquely ski lled software engineers who bridge data science and research fields. At the same time, more than 4,000 planetariums across the globe immerse millions of visitors in scientific data. We have identified the potential for critical synergy across data, software, hardware, locations, and content that -- if prioritized over the next decade -- will drive discovery in astronomical research. Planetariums can and should be used for the advancement of scientific research. Current facilities such as the Hayden Planetarium in New York City, Adler Planetarium in Chicago, Morrison Planetarium in San Francisco, the Iziko Planetarium and Digital Dome Research Consortium in Cape Town, and Visualization Center C in Norrkoping are already developing software which ingests catalogs of astronomical and multi-disciplinary data critical for exploration research primarily for the purpose of creating scientific storylines for the general public. We propose a transformative model whereby scientists become the audience and explorers in planetariums, utilizing software for their own investigative purposes. In this manner, research benefits from the authentic and unique experience of data immersion contained in an environment bathed in context and equipped for collaboration. Consequently, in this white paper we argue that over the next decade the research astronomy community should partner with planetariums to create visualization-based research opportunities for the field. Realizing this vision will require new investments in software and human capital.
Virtual Reality (VR) technology has been subject to a rapid democratization in recent years, driven in large by the entertainment industry, and epitomized by the emergence of consumer-grade, plug-and-play, room-scale VR devices. To explore the scient ific potential of this technology for the field of observational astrophysics, we have created an experimental VR application: E0102-VR. The specific scientific goal of this application is to facilitate the characterization of the 3D structure of the oxygen-rich ejecta in the young supernova remnant 1E 0102.2-7219 in the Small Magellanic Cloud. Using E0102-VR, we measure the physical size of two large cavities in the system, including a (7.0$pm$0.5) pc-long funnel structure on the far-side of the remnant. The E0102-VR application, albeit experimental, demonstrates the benefits of using human depth perception for a rapid and accurate characterization of complex 3D structures. Given the implementation costs (time-wise) of a dedicated VR application like E0102-VR, we conclude that the future of VR for scientific purposes in astrophysics most likely resides in the development of a robust, generic application dedicated to the exploration and visualization of 3D observational datasets, akin to a ``ds9-VR.
Scientists across all disciplines increasingly rely on machine learning algorithms to analyse and sort datasets of ever increasing volume and complexity. Although trends and outliers are easily extracted, careful and close inspection will still be ne cessary to explore and disentangle detailed behavior, as well as identify systematics and false positives. We must therefore incorporate new technologies to facilitate scientific analysis and exploration. Astrophysical data is inherently multi-parameter, with the spatial-kinematic dimensions at the core of observations and simulations. The arrival of mainstream virtual-reality (VR) headsets and increased GPU power, as well as the availability of versatile development tools for video games, has enabled scientists to deploy such technology to effectively interrogate and interact with complex data. In this paper we present development and results from custom-built interactive VR tools, called the iDaVIE suite, that are informed and driven by research on galaxy evolution, cosmic large-scale structure, galaxy-galaxy interactions, and gas/kinematics of nearby galaxies in survey and targeted observations. In the new era of Big Data ushered in by major facilities such as the SKA and LSST that render past analysis and refinement methods highly constrained, we believe that a paradigm shift to new software, technology and methods that exploit the power of visual perception, will play an increasingly important role in bridging the gap between statistical metrics and new discovery. We have released a beta version of the iDaVIE software system that is free and open to the community.
Bionic vision is a rapidly advancing field aimed at developing visual neuroprostheses (bionic eyes) to restore useful vision to people who are blind. However, a major outstanding challenge is predicting what people see when they use their devices. Th e limited field of view of current devices necessitates head movements to scan the scene, which is difficult to simulate on a computer screen. In addition, many computational models of bionic vision lack biological realism. To address these challenges, we propose to embed biologically realistic models of simulated prosthetic vision (SPV) in immersive virtual reality (VR) so that sighted subjects can act as virtual patients in real-world tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا